Volume 52 | Number 8 | Year 2017 | Article Id. IJMTT-V52P574 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P574
In this work, we introduce the concept of generalized α-η- rational proximal contraction of first and second kind. Then we establish some best proximity theorems for such kind of contraction in the framework of metric spaces. The presented results generalize and improve several existing results in the best proximity theory.
[1] Fan, K: Extension of two fixed point theorems of F.E. Browder. Math Z. 112, 234-240(1969).
[2] Prolla, JB: Fixed point theorems for set valued mappings and existence of best approximations, Numer Funct Anal Optim. 5, 449-455(1982).
[3] Reich, S: Approximate selections, best approximations, fixed points and invariant sets. J Math. Anal. Appl. 62, 104-113(1978). doi: 10.10.16/0022-247X(78)90222-6.
[4] Sehgal, VM, Singh, SP: A theorem on best approximation Numer. Funct. Anal. Optim . 10, 181-184(1989).
[5] Sehgal, VM, Singh, SP, A generalization of multifunctions of Fan’s best approximation theorem. Proc. Am. Math. Soc. 102, 534-537(1988).
[6] Savita Rathee, Kusum Dhingra: Best Proximity Point for Generalized Geraghty-Contractions with MT-Condition, International Journal of Computer Application, 127(8), 8-11, (2015).
[7] Savita Rathee, Kusum Dhingra: MT-Proximal Contractions and Best Proximity Point Theorems, Global Journal of Pure and Applied Mathematics, 11(5), 3239-3248, (2015).
[8] Sadiq Basha, S: Extensions of Banach’s contraction principle, Numer. Funct. Anal. Optim. 31,569-576(2010). doi:10.1080/01630563.2010.485713 [9] Sadiq Basha, S: Best proximity points: global optimal approximate solution. J. Glob.Optim. 49(1), 15–21 (2011).
[10] Sadiq Basha, S, Veermani, P, Pai, DV: Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237-1246(2001).
[11] Nashine, HK, Kumam, P, Vetro, C: Best proximity point theorems for rational proximal contractions. Fixed Point Theory Appl. (2013) doi:10.1186/1687-1812-2013-95.
[12] Sadiq Basha,S, Shahzad, N: Best proximity point theorems for generalized proximal contractions. Fixed Point Theory Appl. 2012, 42(2012).
[13] Hussain, N, Kutbi, MA, Salimi, P: Best proximity point results for modified.
[14]Sankar Raj, V, Veeramani, P: Best proximity pair theorems for relatively nonexpansive mappings. Appl. Gen. Topol. 10(1),
21-28(2009).
[15] Al-Thagafi, MA, Shahzad, N: Convergence and existence results for best proximity points. Nonlinear Anal. 70(10),
3665-3671(2009).
[16] Sadiq Basha, S, Veermani, P: Best proximity pair theorems for multifunctions with open fibres. J Approx Theory. 103,
119-129(2000).
Anil Kumar, Savita Rathee, Kusum Dhingra, "Existence of Best Proximity Points for Generalized (α-η) – Rational Proximal Contraction," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 8, pp. 528-536, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P574