Volume 52 | Number 9 | Year 2017 | Article Id. IJMTT-V52P583 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P583
Reena.G.patel, Dr.P.H.Bhathawala, "Optimal Solution of a Degenerate Transportation Problem," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 9, pp. 585-589, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P583
1) Bazaraa M.S., Jarvis J.J., Sherali H.D., 1990. Linear Programming and Network Flows, John Weily, Second Edition, New York.
2) Lai Y.J., Hwang C.L., 1992. Mathematical Programming Methods and Applications, Springer, Berlin.
3) Swarup K., Gupta P.K., Mohan M., 2006. Operations Research, Sultan Chand and Sons, New Delhi.
4) Charnes, Cooper (1954). The Stepping-Stone method for explain linear programming. Calculation in transportation problems. Management Science 1(1)49-69
5) Dantzing G.B (1963).Linear Programming and Extensions, New Jersey: Princeton University Press.
6) Hitchcock FL (1941). The distribution of a product from several sources to Numerous Localities, Journal of Mathematical Physics 20 1941 224-230.
7) Koopmans TC (1947). Optimum Utilization of the Transportation system proceeding of the International statistical conference, Washington D.C.
8) A Charnes, W.W. Cooper and A. Henderson. An Introduction to Linear Programming, Wiley, New York, 1953.
9) Taha. H. A., Operation s Research –Introduction, Prentice Hall Of India (PVT), New Delhi, 2004.
10) Sharma J.K., Operations Research –Theory and Applications, Macmillan India (LTD), New Delhi, 2005.
11) Sudhakar V.J., Arunasankar .N., Karpagam .T., A New Approach for finding an optimal solution for Transportation problems, European Journal of Scientific Research ,ISSN 1450-216X Vol.68 No.2(2012), pp 254-257.
12) Hadley. G., Linear Programming, University of Chicago, Addison-Wesley Publishing Company, Inc. Reading, Massachusetts. Palo Alto. London.