Volume 52 | Number 9 | Year 2017 | Article Id. IJMTT-V52P589 | DOI : https://doi.org/10.14445/22315373/IJMTT-V52P589
S. M. Vaghasiya, G. V. Ghodasara, "4-Difference Cordial Labeling of Cycle and Wheel Related Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 52, no. 9, pp. 622-626, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V52P589
[1] F. Harary, Graph theory, Addision-wesley, Reading, MA (1969).
[2] I. Cahit, On cordial and 3-equitable labelings of graphs, Util. Math., 37(1990), 189-198.
[3] J. A. Gallian, A dynemic survey of graph labeling, The Electronics Journal of Combinatorics, 16(2013), ]DS6 1 - 308.
[4] J. Gross and J. Yellen, Graph theory and its applications, CRC Press, (1999).
[5] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference Cordial Labeling of Graphs, Global Journal of Mathematical Sciences: Theory and Practical, 5 (2013) 185-196.
[6] R. Ponraj, M. Maria Adaickalam and R. Kala, k- difference cordial labeling of graphs, International Journal of Mathematical Combinatorics, 2 (2016), 121-131.
[7] R. Ponraj and M. Maria Adaickalam, 3-difference cordial labeling of some cycle related graphs, Journal of Algorithms and Computation, 47 (2016), 1-10.
[8] S. M. Vaghasiya and G. V. Ghodasara, Difference Cordial of Operational Graph Related to Cycle, International Journal of Advanced Engineering Research and Science, 3 (2016), 236-239.