Volume 53 | Number 4 | Year 2018 | Article Id. IJMTT-V53P531 | DOI : https://doi.org/10.14445/22315373/IJMTT-V53P531
In this paper, we find all the idempotents of 3×3 upper
(lower) triangular matrices over the commutative ring Zp, i.e., U3(Zp[x])
(L3(Zp[x])) for any prime p. We also show that for the
ring of upper (lower) triangular matrices over Zn[x], i.e., U3(Zn[x])
(L3(Zn[x])), every diagonal entry of any idempotent
matrix in U3(Zn[x]) (L3(Zn[x]))
must be an idempotent of Zn for every n.
[1] Idempotents and units of matrix rings over polynomial rings, Pramod Kanwar, Meenu Khatkar and R. K. Sharma, International Electronic Journal of Algebra Volume 22 (2017) 147 - 169.
[2] Idempotents in ring extensions, P. Kanwar, A. Leroy and J. Matczuk, J. Algebra, 389 (2013), 128 - 136.
Gaurav Mittal, Kanika Singla, "On The Properties of Idempotents of the Matrix Ring M3 (zn[x])," International Journal of Mathematics Trends and Technology (IJMTT), vol. 53, no. 4, pp. 254-258, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V53P531