Volume 53 | Number 4 | Year 2018 | Article Id. IJMTT-V53P537 | DOI : https://doi.org/10.14445/22315373/IJMTT-V53P537
Viswanathan. N, Ramakrishnan. M, "Order Statistics based on Exponential and Weibull Distributions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 53, no. 4, pp. 293-300, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V53P537
[1] W. Weibull, “A statistical distribution functions with wide applicability”, J. Appl. Mech. vol. 18, pp. 292-297, 1951.
[2] J. F. Lawless, Statistical Models and Methods for Lifetime Data. Wiley, New York, 1982.
[3] H. Rinne, The Weibull Distribution The Hand book. Chapman & Hall. New York, 2009.
[4] R. Jiang and D.N.P. Murthy, “Comment on a general linear–regression analysis applied to the three–parameter Weibull distribution”, IEEE Transactions on Reliability, vol. 46, pp. 389–393, 1997.
[5] V. Bartkute and L. Sakalauskas., “The method of three-parameter Weibull distribution estimation”, Acta ET Commentationes Universitatis Tartuensis De Mathematica, vol. 12, pp. 65-78, 2008.
[6] L.J. Bain and M.E. Engelhardt, M . Statistical Analysis of Reliability and Life Testing Models, 2nd Edition Marcel Dekker,INC . New York, 1991.
[7] L.J. Bain and C.E. Antle. “Estimation of parameters in the Weibull distribution”. Technometrics, vol. 9, 621-627, 1967.
[8] D.J. Davis.” An analysis of some failure data”. Journal of American Statistical. Association.vol. 47, pp. 113-150, 1952.
[9] Barry C. Arnold, N. Balakrishnan and H.N. Nagaraja, A First Course in Order Statistics, Wiley & Sons, Inc., 1992.
[10] H.A. David and H.N. Nagaraja, Order Statistics third edition,John Wiley & Sons, Inc., 2003.
[11] J. Lieblein, “On moments of order statistics from the Weibull distribution”,Ann. Math. Statist. vol. 26, pp. 330-333. 1955.