Volume 53 | Number 5 | Year 2018 | Article Id. IJMTT-V53P549 | DOI : https://doi.org/10.14445/22315373/IJMTT-V53P549
Amit Gupta, Dr. GajendraSaraswat, Dr. Ravendra Singh, "Effects of time Dependent acceleration on the flow of Blood in Artery with periodic body acceleration," International Journal of Mathematics Trends and Technology (IJMTT), vol. 53, no. 5, pp. 409-415, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V53P549
1. Arntzenius, A.C., Laird, J.D., (1972);“Body acceleration synchronous with the heart beat”, Bibl. Cardiol., 29, 1-5.
2. Verdouw, P. D. , Noordergraaf, A., Arntzenius, A.C. (1973); “Relative movement between subject and support in body acceleration appliedsynchronous with the heart beat”“Bibl. Cardiol., 31, 57-62.
3. Sud, V.K., Gierke, H.E., Kaleps, I. and Oestreicher (1985);“ Analysis of blood flow under time dependent acceleration”, Med.&Biol.Eng.&Comput., vol. 23, pp.69-73.
4. Sud, V.K. and Sekhon, G.S. (1985); “Arterial flow under periodic body acceleration’, Bulletin of Mathematical Biology, vol.47,pp.35-52.
5. Kapur ,J.N. (1985);“ Mathematical models in Biology and medicine”, East- west press Pvt Ltd (india).
6. Chaturani, P. and Upadhya, V.S. (1981); “A two- fluid model for blood flow through small diameter tubes with non zerocouole stress boundary condition at the interface”, Biorheology, vol.18,pp.245.253.
7. Mandal, P.K., Chakravarthy, S. Mandal, A., and Amin, N. (2007); “ Effect of body acceleration on unsteady pulsatile flow of non-newtonian fluid through a stenosed artery’, Applied Mathematics and computation, Vol.189,pp.766-779.
8. Torrisi M., Tracina R. and Valenti A. (1996);“A group analysis approach for a nonlinear differential system arising in diffusion phenomena”, Journal of Mathematical Physics, Vol. 37, pp. 4758–4767.
9. Cherniha R. (2001);“New exact solutions of one nonlinear equation inmathematical biology and their properties”, Ukrainian Mathematical Journal, Springer New York, Vol. 53, No. 10, pp. 1712–1727.
10. Kumar D. and Kumar S. (2006); “A computational model for the interaction between cell density and immune response”, ActaCienciaIndica, Vol. XXXII M, No. 2, PP. 549–556.
11. Sharma M. K. et. al.(2015); “Pulsatile blood flow through stenosed artery with axial translation”, Int J. Biomath 08,1550028(2015)[21 pages].
12. Kumar S. and Kumar S. (2006); “Numerical study of the axisymmetric blood flow in a constricted rigid tube”, International review of pure and applied mathematics, vol.2 (2),pp.99-109.