Volume 54 | Number 3 | Year 2018 | Article Id. IJMTT-V54P527 | DOI : https://doi.org/10.14445/22315373/IJMTT-V54P527
Nilanjana Gangopadhyaya, Surath Roy, Manasi Sahoo, Suparna Roychowdhury, "Eigenvalue Approach on Generalized Thermoelastic Interactions of a Layer," International Journal of Mathematics Trends and Technology (IJMTT), vol. 54, no. 3, pp. 240-252, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V54P527
[1] M. A. Biot, “Thermoelasticity and irreversible thermodynamics”, J. Appld. Phys, vol.27, pp.240-253, 1956
[2] H. W. Lord, Y. Shulman, “A generalized dynamical theory of thermoelasticity”, J. Mech. Phys. Solids, vol. 15(5), pp.299-309, 1967.
[3] R.B. Hetnarski, M.R. Eslami, Thermal Stresses- Advanced Theory and Applications, Springer, New York, 2009.
[4] A. E. Green, K.A. Lindsay, “Thermoelasticity”, J. Elasticity, vol. 2(1), pp.1-7, 1972.
[5] A. E. Green, P.M. Naghdi, “A re-examination of the basic postulates of thermomechanics”, Proc. R .Soc. London.A, vol.432, pp.171-194, 1991.
[6] D. S. Chandrasekharaiah, “Thermoelasticity with second sound: A review”, Appld .Mech .Rev., vol. 39(3), pp.355-376, 1986.
[7] D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: A review of recent literature”, Appl. Mech .Rev., vol.51(12), pp.705-729, 1998.
[8] H.Taheri, S. Fariborz, & M.R. Eslami, “Thermoelasticity solution of a layer using the Green-Naghdi model”, J. Therm. Stresses, vol.27(9), pp.795-809, 2004.
[9] A. Bagri, H. Taheri, M.R. Eslami & S. Fariborz, “Generalized coupled thermoelasticity of a layer”, J. Therm. Stresses, vol.29(4), pp.359-370, 2006
[10] M.A.Ezzat, “State space approach to generalized magneto-thermoelasticity with two relaxation times in a medium of perfect conductivity”, Int. J. Engg. Sc., vol.35(8), pp.741-752,1997.
[11] M.A.Ezzat, H.M.Youssef, “Generalized magneto-thermoelasticity in a perfectly conducting medium”, Int. J. Solid Struct., vol.42, pp.6319-6334, 2005.
[12] R.B. Hetnarski, J. Ignaczak, “On solution like thermoelastic waves”, Appld .Anal., vol.65, pp.183-204, 1997.
[13] S.A. Hosseini Kordkheili, R. Naghdabadi, “Thermoelastic analysis of functionally graded cylinders under axial loading”, J. Therm Stresses, vol.31(1), pp.1-17, 2007.
[14] J. Ignaczak, M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds, OUP, Oxford, 413 pages, 2010.
[15] M. Islam, M. Kanoria, “One dimensional problem of a fractional order two-temperature generalized thermo-piezoelasticity”, Math. Mech.Solids, vol. 19(6), pp.672-693, 2014.
[16] A. Kar, M. Kanoria, “Analysis of thermoelastic response in a fiber reinforced thin annular disc with three-phase-lag effect”, Eur. J. Pure & Appld. Maths., vol.4(3), pp.304-321 ,2011.
[17] R. Kumar, S. Mukhopadhyay, “Effects of thermal relaxation time on plane wave propagation under two-temperature thermoelasticity”, Int . J .Engg. Sci., vol.48(2), pp.128-139, 2010.
[18] N.C. Das, A. Lahiri, S. Sarkar, S. Basu, “Reflection of generalized thermoelastic waves from isothermal and insulated boundaries of a half space ", Comp. & Maths. with Applications , vol.56(11), pp.2795-2805 , 2008.
[19] N. Das Gupta, N.C. Das, “Eigenvalue approach to fractional order generalized thermoelasticity with line heat source in an infinite medium”, J. Therm. Stresses, vol.39 (8), pp.977-990, 2016.
[20] M.B. Bera, N.C. Das & A. Lahiri, “Eigenvalue approach to two temperature generalized thermoelastic interaction in an annular disk”, J.Therm. Stresses, vol.38 (11), pp.1308-1322, 2015.
[21] J. Ignaczak, “Soliton-like solutions in a nonlinear dynamic coupled thermoelasticity”. J. Therm. Stresses, vol.13 (1), pp.73-98, 1990.
[22] R.B. Hetnarski, J. Ignaczak, “Soliton like waves in a low temperature nonlinear thermoelastics solid”, Int .J. Engg .Sc, vol.34 (15), pp.1767-1787, 1996.
[23] Y. Kiani, M.R. Eslami, “Nonlinear generalized thermoelasticity of an isotropic layer based on Lord-Shulman theory”, Euro. J. Mech./A Solids.vol. 61, pp.245-253, 2017.
[24] I.A. Abbas, H.M. Youssef, “A nonlinear generalized thermoelasticity model of temperature dependent materials using finite element method”, Int .J. Thermophys, vol.33(7), pp.1302-1313, 2012
[25] M. Bateni, M.R. Eslami, “Thermally nonlinear generalized thermoelasticity of a layer”. J. Therm. Stresses, vol.40 (10), pp.1320-1338, 2017.
[26] A. Bagri, M.R. Eslami, “A unified generalized thermoelasticity formulation; Application to thick functionally graded cylinders”, J. Therm. Stresses, vol.30 (9-10), pp.911-930, 2007.
[27] X.G. Tian, Y.P. Shen, C.Q. Chen, T.H. He, “A direct finite element method to study of generalized thermoelastic problems”, Int. J. Solids, Struct., vol.43(7), pp.2050-2063, 2006.
[28] M. Shariyat, “Nonlinear transient stress and wave propagation analysis of the FGM thick cylinders employing a unified generalized thermoelasticity theory”, Int .J. Mech .Sc., vol.65(1), pp.24-37, 2012.
[29] V. Zakian, “Numerical inversion of Laplace transform”, Electronics letters, vol.5(6), pp.120-121,1969.
[30] N. Noda, R.B. Hetnarski, & Y. Tanigawa, Thermal Stresses, 2nd ed., Taylor & Francis, New York, 2003.
[31] A. Lahiri, N.C. Das, S. Sarkar & M. Das, “Matrix method of solution of coupled differential equations and its applications in generalized thermoelasticity”, Bull .Cal. Math. Soc. vol.101 (6), pp.571-590, 2009.