Volume 54 | Number 4 | Year 2018 | Article Id. IJMTT-V54P534 | DOI : https://doi.org/10.14445/22315373/IJMTT-V54P534
A connected graph G(p,q) is said to be Mean Edge-Antimagic vertex labeling if there exists a bijection
[1] Harary.F, Graph Theory, Addision Wesley, Reading mass, 1972.
[2] Hartsfield.N and Ringel.G, Pearls in Graph Theory, Academic Press, Boston- San Diego – New York- London,1990.
[3] Nicholas.T, Somasundaram.S and Vilfred.V, On (a,d)-antimagic Special trees, Unicyclic graphs and Complete bibartite graphs, Ars.Combin.70(2004),207-220.
[4] Rosa.A, On Certain valuations of the vertices of a graph, Theory of graphs, Gordon and N.Y.Breach and Dunod, Paris(1967), 349-355.
[5] Somasundaram.S and Ponraj.R, Mean labeling of graphs, National academy Science letters, 26(2003), 210-213.
[6] Somasundaram.S and Ponraj.R, Some Results on Mean graph, Pure and Applied Mathematics Science, 58(2003), 29-35.
[7] West.D.B, Introduction to Graph Theory, Prentice Hall of India, New Delhi, 2005.
K.Thirugnanasambandam, G.Chitra, "Mean Edge-Antimagic Vertex Labeling of Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 54, no. 4, pp. 300-304, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V54P534