Volume 54 | Number 6 | Year 2018 | Article Id. IJMTT-V54P553 | DOI : https://doi.org/10.14445/22315373/IJMTT-V54P553
Let ๐บ = ๐,๐ธ be a graph with ๐ vertices and ๐ edges. Let ๐: ๐ โ 1,2, โฆ ๐ + 1 is called an Integral Root
labeling if it is possible to label all the vertices ๐ฃ โ ๐ with distinct elements from 1,2, โฆ
๐
+ 1 such that it induces an edge labeling ๐ +: ๐ธ โ 1,2, โฆ ๐ defined as ๐ +(๐ข๐ฃ) = (๐ ๐ข ) 2+(๐ ๐ฃ ) 2+๐ ๐ข ๐(๐ฃ) 3 is distinct for all ๐ข๐ฃ โ ๐ธ. (i.e.) The distinct vertex
labeling induces a distinct edge labeling on the graph. The graph which admits
Integral Root labeling is called an Integral Root Graph. In this paper, we
introduce Integral Root labeling and investigate Integral Root labeling of
Path, Comb, Ladder, Triangular Snake and Quadrilateral Snake.
[1] J.A.Gallian, 2010, โA dynamic Survey of graph labeling,โ The electronic Journal of Combinatories17#DS6.
[2] F.Harary, 1988, โGraph Theory,โ Narosa Publishing House Reading, New Delhi.
[3] S.Sandhya, S. Somasundaram, S. Anusa, โRoot Square Mean labeling of graphs,โ International Journal of Contemporary Mathematical Science, Vol.9, 2014, no.667-676.
[4] S. S. Sandhya, E. Ebin Raja Merly and S. D. Deepa, โHeronian Mean Labeling of Graphsโ, communicated to International journal of Mathematical Form.
[5] V.L. Stella Arputha Mary S. Navaneetha Krishnan and A. Nagarajan โ Z4p Magic labeling on some special graphsโ, International journal of Mathematics and Soft Computing Vol. 3, No: 3 (2013) (61-70).
[6] V.L. Stella Arputha Mary S. Navaneetha Krishnan and A. Nagarajan โ Z4p Magic labeling for some more special graphsโ, International journal of Physical Sciences, Ultra Scientist Vol. 25, No: 3 (2013) (319-326).
V.L. Stella Arputha Mary, N. Nanthini, "Integral Root Labeling of Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 54, no. 6, pp. 437-447, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V54P553