Volume 54 | Number 6 | Year 2018 | Article Id. IJMTT-V54P556 | DOI : https://doi.org/10.14445/22315373/IJMTT-V54P556
Let ๐บ ๐, ๐ธ be a graph with vertex set ๐ and edge set ๐ธ. Let ๐ denote the diameter of ๐บ and ๐ ๐ข, ๐ฃ denote the distance between the
vertices ๐ข
and ๐ฃin
๐บ.
In this paper, we introduce a new labeling called radio antipodal mean
labeling. An radio antipodal mean labeling of ๐บ is a function ๐ that assigns to each vertex a
non-negative integer such that ๐ ๐ข โ ๐ ๐ฃ if ๐ ๐ข, ๐ฃ < ๐and ๐ ๐ข, ๐ฃ + ๐ ๐ข +๐(๐ฃ) 2 โฅ ๐, for any two distinct vertices ๐ข, ๐ฃ โ ๐(๐บ). The radio antipodal mean number
of ๐
denoted by ๐๐๐๐ ๐ , is the maximum number assigned to
any vertex of ๐บ. The radio antipodal mean number of ๐บ, denoted by ๐๐๐๐ ๐บ is the minimum value of ๐๐๐๐ ๐ taken over all radio antipodal
mean labelings ๐ of ๐บ. We determine the antipodal mean number of path,
circle, wheel, mesh and enhanced mesh.
[1] Albert William and Charles Robert Kenneth, โ Radio Antipodal Number of Certain Graphsโ, Journal of Computer and Mathematics Science, Vol. 2(6),2011,pp 868-872.
[2] Albert William and Charles Robert Kenneth, โ Radio Antipodal Number of Grid like architeture Graphsโ, Proceedings of the international conference on Mathematics in Engineering and Business Management, Vol. 1, 2012, pp 225- 228.
[3] BharatiRajan, IndraRajasingh, KinsYenoke, Paul Manuel, โRadio Number of Graphs with Small Diameterโ, International Journal of Mathematics and Computer Science, Vol 2, 2007, pp 209-220.
[4] Calamoneri T and Petreschi R, โL(2,1)-Labeling of Planar Graphsโ, ACM, 2001, pp 28-33.
[5] Chang G.J and Lu C, โDistance - Two Labeling of Graphsโ, European Journal of Combinatorics, 24, 2003,pp53 -58.
[6] Chartrand G, Erwin D and Zhang P, โRadio k-Colorings of Pathsโ, DisscusMath.Graph Theory, 24,2004,pp 5 -21.
[7] Chartrand G, Erwin D, and Zhang P, โRadio Antipodal Colorings of Cyclesโ, CongressusNumerantium, 144 2000.
[8] ChartandG,Erwin D, Zhang P, Kalamazoo โRadio Antipodal Coloring of Graphsโ, 2000.
[9] ChartrandG,Erwin D, and Zhang P, โRadio Labeling of Graphsโ, Bull. Inst. Combin.Appl, 33,2001, pp 77-85 .
[9] Justie Su-tzu Juan and Daphne Der-Fen Liu,, โAntipodal Labeling for Cyclesโ, 2006.
[10] Khennoufa R and Tongni O, โA note on Radio Antipodal Colouring of Pathsโ, Math.Bohem.130 ,2005.
[11] Mustapha Kchikech, RiadhKhennoufa and Olivier Tongi, โ Linear and Cyclic Radio k- Labelings of Treesโ, Discussiones Mathematicae Graph theory, 2007.
[12] Ringel G, โTheory of Graphs and its Applicationsโ, Proceedings of the Symposium Smolenice 1963, Prague Publ.House of Czechoslovak Academy of Science, 162, 1964.
[13] Rosa A, โCyclic Steiner Triple Systems and Labeling of Triangular Cactiโ,ScientiaVol 1, 1988, pp 87-95.
D.Antony Xavier, R.C.Thivyarathi, "Radio Antipodal Mean Number of Certain Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 54, no. 6, pp. 467-470, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V54P556