Volume 54 | Number 6 | Year 2018 | Article Id. IJMTT-V54P559 | DOI : https://doi.org/10.14445/22315373/IJMTT-V54P559
N.Gangopadhyaya, N.C.Das, "Eigenvalue Approach to Generalized Thermoelastic Interactions in an Annular Disk," International Journal of Mathematics Trends and Technology (IJMTT), vol. 54, no. 6, pp. 485-499, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V54P559
[1] H.W.Lord, Y.Shulman, “A Generalized Dynamical Theory of Thermoelasticity”, J.Mech.Phys.Solids, vol.15, pp.299-309, 1967.
[2] A.E.Green, K.A.Lindsay, “Thermoelasticity”, J.Elasticity, vol.2, pp.1-7, 1972.
[3] A.E.Green, N.Laws, “On The Entropy Production Inequality”, Arch.Rat.Mech.Anal, vol.45, pp.45-47, 1972.
[4] A.E.Green, P.M.Nagdhi, “A Re-examination of The Basic Postulates of Thermodynamics”, Proc.R.Soc. London A, vol.432, pp.171-194, 1991.
[5] A.E.Green, P.M.Nagdhi, “Thermoelasticity without Energy Dissipation”, J.Elasticity, vol.31, pp. 189-208, 1993.
[6] R.B.Hetnarski, J.Ignaczak, “Generalized Thermoelasticity”, J.Thermal Stresses, vol.22, pp.451-476, 2004.
[7] D.S.Chandrasekharaiah,” Hyperbolic Thermoelasticity: A review of Recent Literature”, Appl.Mech.Review, vol.51, pp.705-729, 1998.
[8] M.Anwar, H.Sherief, “State Space Approach to Generalized Thermoelasticity”, J.Thermal Stresses, vol.11, pp.353-365, 1988.
[9] N.C.Das, A.Lahiri, “Thermoelastic Interactions Due to Prescribed Pressure Inside a Spherical Cavity in an Unbounded Medium”, Int. J. Pure and Appl.Math., vol.31, pp.19-32, 2001.
[10 ]H.Sherief, “On Uniqueness and Stability in Generalized Thermoelasticity”, Quarterly of Appl.Math., vol.45, pp.773-778, 1987.
[11] J. Ignaczak , “Uniqueness in Generalized Thermoelasticity”, J.Thermal Stresses, vol.2, pp.171-175, 1979.
[12] H. M. Youssef, “Theory of Two-Temperature Generalized Thermoelasticity”, IMA J.Appl.Math, vol.71, pp.383-390, 2006.
[13] S.Banik, M.Kanoria, “Effects of Three-Phase-Lag on Two-Temperature Generalized Thermoelasticity for Infinite Medium with Spherical Cavity”, Appl. Math. Mech-Engl.Ed., vol.33, pp.483-498, 2012.
[14] R.Quintanilla, R. Racke, “A Note on Stability in Three-Phase Lag Heat Conduction, International “, J. Heat and Mass Transfer, vol. 51, pp.24-29, 2008.
[15] R. Kumar, S. Mukhopadhyay, “Analysis of The effects of Phase-lags on Propagation of Harmonic Plane Waves in Thermoelastic Media”, Comp. Methods in Science and Technology, vol.16, pp.19-28, 2010.
[16] R. Kumar, S. Mukhopadhyay, “Effects of Three-Phase Lags on Generalized Thermoelasticity for an Infinite Medium with a Cylindrical Cavity”, J.Thermal stresses, vol.32, pp.1149-1165, 2009.
[17] A. Bagri, M. R. Eslami, “Generalized Coupled Thermoelasticity of Disks Based on The Lord-Shulman Model”, J.Thermal Stresses, vol.27, pp.691-704, 2004.
[18] H.Taheri, S.J.Fariborz, M.R.Eslami, “Thermoelastic Analysis of an Annulus Using the Green-Nagdhi Model”, J.Thermal Stresses, vol.28, pp.911-927, 2005.
[19] A. Kar, M.Kanoria, “ Analysis of Thermoelastic Response in a Fiber Reinforced Thin Annular Disc with Three-Phase-Lag Effect”, European J.of Pure and Applied Math, vol.4, pp.304-321, 2011
[20] A.Lahiri, N.C.Das, S.Sarkar and M.Das, “Matrix Method of solution of Coupled Differential Equations and Its Applications in Generalized Thermoelasticity”, Bull. Calcutta Mathematical Society, vol.101, pp.571-590, 2009.
[21] V.Zakian, “ Inversion of Laplace Transforms”, Electronic Letters, vol.5, pp.120-121, 1969.