Volume 55 | Number 2 | Year 2018 | Article Id. IJMTT-V55P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V55P515

By the application of a result given by Nishimoto ([13], (2006),p. 35-44), we investigate the differintegrals of multivariable I-function and class of multivariable polynomials containing general power functions in its argument

[1] F.Y. Ayant, An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT). 31 (3) (2016),142-154.

[2] C. Fox, The G and H-functions as symmetrical Fourier Kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429.

[3] M. Garg and R. Mishra, On r-dimensional N-fractional differintegral of multivariable H-function, J. Indian Acad. Math, 28 (2006), 189-198.

[4] B.P. Gautam and A.S. Asgar, The A-function. Revista Mathematica. Tucuman (1980).

[5] B.P. Gautam and A.S. Asgar, On the multivariable A-function. Vijnana Parishas Anusandhan Patrika,29(4) (1986), 67-81.

[6] K.C. Gupta, S.P. Goyal and R.Garg, N-fractional differintegral of multivariable H-function, Ganita Sandesh, 16 (2002), 5-12.

[7] B.B. Jaimini and K. Nishimoto, N-fractional calculus of generalized Lauricella function of several variables, J. Frac. Calc. 29 (2006), 65-74.

[8] K.S. Kumari, T.M. Vasudevan Nambisan and A.K. Rathie, A study of I-function of two variables, Le Matematiche, 69(1) (2014), 285-305.

[9] A.M. Mathai and R.K. Saxena, The H-function with applications in statistics and other disciplines, John Wiley and Sonc Inc, New York, 1978.

[10] K. Nishimoto, Fractional calculus, Descartes Press, Koriyama, Japan (1984), Vol I ; (1987), Vol II ; (1989), Vol III ; (1991), Vol IV and (1996), Vol V.

[11] K. Nishimoto, An essence of Nishimoto's fractional calculus, (Calculus of Century) : Integration and differentiation of arbitrary order, Descartes Press, Koriyama, Japan, 1991.

[12] K.Nishimoto, N-fractional calculus of power and logarithmic functions and some identities, J. Frac. Calc. 21 (2002), 1.6.

[13] K.Nishimoto, N-fractional calculus of some composite functions , J. Frac. Calc. 29 (2006), 35-44.

[14] K. Nishimoto and R.K. Saxena, N-fractional calculus of power functions, J. Frac. Calc. 31 (2007), 57-64.

[15] Y.N. Prasad, Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 (1986) , 231-237

[16] Y.N. Prasad and A.K.Singh, Basic properties of the transform involving and H-function of r-variables as kernel, Indian Acad Math, (2) (1982), 109-115.

[17] J. Prathima, V. Nambisan and S.K. Kurumujji, A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics Vol (2014), 1-12.

[18] S.S. Romero, S.L. Kalla and K. Nishimoto, N-fractional calculus of some functions function, J. Frac. Calc. 9 (1996), 33-39.

[19] S.S. Romero, A Prioto and K. Nishimoto, N-fractional differintegral of generalized hypergeometric function, J. Frac. Calc, 15 (1999), 55-60.

[20] R.K. Saxena and K. Nishimoto, N-fractional calculus of the multivariable H-functions, J. Frac. Calc, 31 (2007), 43-52.

[21] V.P. Saxena, Formal solution of certain new pair of dual integral equations involving H-function, Proc. Nat. Acad.Sci. India. Sect, (2001), A51, 366–375.

[22] K. Sharma, On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences 3(1) ( 2014 ), 1-13.

[23] C.K. Sharma and P.L. Mishra, On the I-function of two variables and its properties. Acta Ciencia Indica Math,17 (1991), 667-672.

[24] H.M. Srivastava, A contour integral involving Fox's H-function. Indian. J. Math, (14) (1972), 1-6.

[25] H.M. Srivastava, A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), 183-191.

[26] H.M.Srivastava and R. Panda, Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24 (1975),119-137.

[27] H.M.Srivastava and R.Panda, Some expansion theorems and generating relations for the H-function of several complex variables II. Comment. Math. Univ. St. Paul. 25 (1976), 167-197.

[28] H.M. Srivastava and N.P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials. Rend. Circ. Mat. Palermo. Vol 32 (No 2) (1983), 157-187.

[29] N. Südland, B. Baumann and T.F. Nonnenmacher, Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998), 401-402.

[30] N.Sudland, B. Baumann and T.F. Nannenmacher, Fractional drift-less Fokker-Planck equation with power law diffusion coefficients, in V.G. Gangha, E.W. Mayr, W.G. Vorozhtsov (Eds.), Computer Algebra in Scientific Computing (CASC Konstanz 2001), Springer, Berlin, 2001, 513–525.

[31] C. Szego, (1975), Orthogonal polynomials. Amer. Math. Soc. Colloq. Publ. 23 fourth edition. Amer. Math. Soc. Providence. Rhodes Island, 1975.

F.Y.Ayant, "N-Fractional Calculus and Multivariable I-Function and Generalized Multivariable Polynomials," *International Journal of Mathematics Trends and Technology (IJMTT)*, vol. 55, no. 2, pp. 117-126, 2018. *Crossref*, https://doi.org/10.14445/22315373/IJMTT-V55P515