Volume 55 | Number 2 | Year 2018 | Article Id. IJMTT-V55P516 | DOI : https://doi.org/10.14445/22315373/IJMTT-V55P516
S.K.Sharma, A.S.Shekhawat, "Integral Transform and the Solution of Fractional Kinetic Equation Involving Some Special Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 55, no. 2, pp. 127-136, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V55P516
[1] A.A. Kilbas, M.Saigo and R.K. Saxena, Generlized Mittag-Leffler function and generalized fractional calculus operators, Integral Transform and Special Functions, Vol.15, pp.31-49, 2004
[2] A.Faraz, T. Salim, A. Sadik and J.Ismail, Solution of generalization fractional kinetic Equation in terms of special functions, International Mathematical Forum, Hikari Ltd., Vol.9, No.33, pp.1647-1657, 2014.
[3] A.M. Mathai, R.K. Sexena and H.J. Houbold, On generalized fractional kinetic equation, Physica A 344, pp.653-664, 2004.
[4] A.Saichev and G. Zaslavsky, Fractional kinetic equations, solutions and applications, Chaos, Vol.7, pp.753-784. http://dx.doi.org/10.1063/1.166272, 1997.
[5] A.Faraz, T.Salim. S.Sadek and J.Ismail, Generalization K4 function and its application in solving kinetic equation of fractional order, J.Math. Comput. Sci., Vol.4, pp.1-10, 2014.
[6] A. Wiman, Uber de Fundamental Staz in der Theorie der Functionen E(X), Acta Mathematica, Vol. 29(1), pp.191-201, 1905.
[7] F.B.M. Belgacem, A.A. Karaballi, Sumdu transform fundamental properties investigations and applications, International J.Appl.Maths.Stoch. Anal., pp.1-23, 2005.
[8] F.B.M. Belgacem, A.A. Karaballi and S.L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Mathematical problems in Engineering, Vol. 3,pp.103-118, 2003.
[9] G. Zaslavsky, Fractional kinetic equation for Hamiltonian Chaos, Physica D, Vol.76, pp.110 - 122. http://dx.doi.org/10.1016/0167-2789 (94)90254-2, 1994.
[10] H.J. Haubold and A.M. Mathai, The fractional Kinetic equation and thermonuclearfunctions, Astrophys. Space Sci., Vol. 327, pp.53-63, 2000.
[11] I.Podlubny, Fractional differential equations, Vol.198 of mathematics in science and Engineering ,Academic Press ,San Diego, Calif. USA ,1999.
[12] K.S. Miller and B. Ross, An Introduction of Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.
[13] M. Sharma, Fractional integration and fractional differentiation of the M-series, Fract. Calc. Appl. Anal., Vol.11(2), pp.187-192, 2008.
[14] M.A. Asiru, Sumudu transform and the solution of integral equations of convolution type, International Journal of Mathematical Education in science and technology, Vol.32, pp.906-910, 2001.
[15] R.Gorenflo, A.A. Kilbass and S.V. Rogosin, On the general Mittag-Leffler type function, Integral Transform and Special Functions,7(3-4) (1998), pp.215-224.
[16] R.K. Sexena, A.M.Mathai, and H. Haubold, Unified fractional kinetic equation and a fractional diffusion equation, Astrophysics and Space - Science, Vol.290, pp.299 – 310, 2002.
[17] R.K. Sexena, and S. Kalla, On the solution of certain fractional kinetic equations, Appl. Math. Comput., Vol.199, pp.504 – 511, 2008, http://dx.doi.org/10.1016/j.amc.2007.10.005.
[18] R.K. Sexena, A.M. Mathai, and H. Haubold, On fractional kinetic equations, Astrophysics and Space - Sci, Vol.282, pp.281 – 287, 2002.
[19] S.G. Samko, A.A Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.
[20] T.Salim and A.Faraz, A generalization of Mittag-Leffler type function and integral operator associated with fractional calculus, Jou. Frac. Cal. Appl. Vol.3, No., pp.1-13, 2012.
[21] R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Mathematical Journal,Vol.19,pp.7-15, 1971.
[22] V.B.L. Chaurasia and D. Kumar, On the solutions of Generalized fractionalKinetic equation, Adv. Stud. Theor. Phys.,Vol. 4(16), pp.773-780, 2010.
[23] M.Sharma and R.Jain, A note on a generalized M-series as a special function of fractional calculus and applied analysis, Vol.(12), pp. 449-452, 2009V.B.L. Chaurasia and J.Singh, Application of Sumudu Transform in Schrodinger Equation Occurring in Quantum Mechanics, Applied mathematical Sciences, Vol.4(57) ,pp. 2843-2850, 2010.
[24] Y.N. Prasad, Multivariable I-function, Vijanana Parishad Anusandhan Patrika, Vol. 29(4), 231-235, 1986.
[25] Y.N. Prasad, G.S. Yadav, Proc. Math. Soc. B.H.U., I, pp.127-136, 1985.
[26] A.Faraz, T.Salim. S.Sadek and J.Ismail, A generalized of M-series and Integral operator associated with fractional calculus, Asian Journal of Fuzzy and Applied Mathematics. Vol.2 (5), pp.142-155, 2014.
[27] C.F.Lorenzo, and T.T. Hartley, R-function relationship for application in the fractional calculus, NASA/ TM, 2000-210361, 2000.
[28] C.F.Lorenzo, and T.T. Hartley, Generalized functions for the fractional calculus. NASA/ TP, 1999-209424/ REVI, pp.17, 1999.
[29] K. Sharma, On Application of Fractional differ integral Operator to the K4-function, Bol. Soc.Paran. Math., Vol. 30(1), pp.91-97, 2012.
[30] T.T. Hartley and C.F.Lorenzo, A solution to the fundamental linear fractional order differential equations, NASA/TP-1998-208693, 1998.