Volume 55 | Number 7 | Year 2018 | Article Id. IJMTT-V55P565 | DOI : https://doi.org/10.14445/22315373/IJMTT-V55P565
Abhishek Kumar, Nilam, "A SEQIR Model for the Control of Spread of Re-Emerging Contagious Infectious Disease," International Journal of Mathematics Trends and Technology (IJMTT), vol. 55, no. 7, pp. 504-512, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V55P565
[1] A.B. Gumel, C. Connell Mccluskey and J.Watmough, An SVEIR model for assessing the potential impact of an imperfect anti-SARS vaccine, Math. Biosci. and Eng. 3 (2006), pp. 485-494.
[2] A. Kumar and Nilam, Stability of a Time Delayed SIR Epidemic Model Along with Nonlinear Incidence Rate and Holling Type-II Treatment Rate, International Journal of Computational Methods, vol. 15 (1) (2018), pp. 1850055_1 -17.
[3] Amira Rachah and Delfim F. M. Torres, Predicting and controlling the Ebola infection, Mathe. Methods in the app. Scie, (2016), .
[4] B. Bradie, A Friendly Introduction to Numerical Analysis. Prentice Hall, New Jersey, (2006).
[5]. J.R. Brannan and W.E. Boyce, Differential Equations with Boundary Value Problems: An Introduction to Modern Methods and Applications, John Wiley and Sons, New York, (2009).
[6] Juan Zhang, Zhen Jin Gui- Quan Sun, Xiang-Dong Sun and Shigui Ruan Modeling Seasonal Rabies Epidemic in China, Bull Math Biol 74 (2012), pp. 1226-1251.
[7] M. Braun, Differential equations and their applications: An introduction to applied mathematics, Springer -Verlag, New York (1983).
[8] O.N. Bjornstad, B.F. Finkenstadt and B.T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model, Ecol Monogr., 72(2) (2002), pp. 169-184.
[9] R.M. Anderson and R.M. May, Infectious Disease of humans, Oxford University Press Inc, New York, (1991).
[10] S. A. A. Karim and R. Razali, A proposed mathematical model of influenza A, H1N1 for Malaysia, Journal of Appl. Sci,11(8) (2011), pp. 1457-1460.
[11] S.F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infect. Dis.7(3) (2001), pp. 369- 374.
[12] http://www.who.int/denguecontrol/arbo_viral/other_arboviral_chikungunya/en/.
[13] http://www.who.int/csr/sarsarchive/2003_05_07a/en/.
[14] http://www.who.int/mediacentre/factsheets/fs103/en/.
[15] http://www.who.int/mediacentre/factsheets/mers-cov/en/.
[16] W. O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of Epidemics. Proc. R. Soc. Lond. A 115(772) (1927) 700-721.
[17] W. London and J.A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps. i. Seasonal variation in contact rates. Am. J . Epidemiol., 98 (6) (1973), pp. 453-468.
[18] Y.Li Michael, J.S. Muldowney and P.V.N. Driessche, Global stability of SEIRS model in epidemiology,Canadian Applied Mathematics Quarterly 7 (1999), pp. 409-425.
[19] Y.Li Michael, John R. Graef, Liancheng Wang and Janos Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci. 160 (1999), pp. 191-213.