Volume 55 | Number 7 | Year 2018 | Article Id. IJMTT-V55P567 | DOI : https://doi.org/10.14445/22315373/IJMTT-V55P567
In this article we introduced two symbols D +¥ and D -¥ as extended hyperbolic numbers and modified the definition of hyperbolic valued measure. Also we defined hyperbolic valued signed measure and proved some theorems on it.
[1] D. Alpay, M. E. Luna-Elizarraras, M. Shapiro: Kolmogorov's axioms for probabilities with values in hyperbolic numbers, Adv. Appl. Clifford Algebras, DOI 10.1007/s00006-016-0706-6, (2016).
[2] F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti, P. Zampetti, The Mathematics of Minkowski Space--Time (Birkhäuser Verlag, Basel, 2008)
[3] F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, P. Zampetti: Geometry of Minkowski Space--Time, Springer (2011).
[4] R. Kumar, K. Sharma: Hyperbolic valued measures and Fundamental law of probability, Global Journal of Pure and Applied Mathematics, Vol. 13, No. 10 (2017), pp. 7163-7177.
[5] M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac: Bicomplex numbers and their elementary functions, Cubo A Mathematical Journal v. 14, No. 2 (2012), 61--80.
[6] M.E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac: Bicomplex holomorphic functions: The algebra, geometry and analysis of bicomplex numbers, Frontiers in Mathematics, Birkhäuser Basel, 2015.
[7] G. B. Price: An Introduction to Multicomplex Spaces and Functions, 3rd Edition, Marcel Dekker, New York, 1991.
[8] I. K. Rana: An Introduction to Measure and Integration, 2nd Edition, Narosa Publishing House, 2013.
[9] D. Rochan and M. Shapiro: On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, Fasc. Math. 11(2004), 71-- 110.
Chinmay Ghosh, Sanjoy Biswas, Taha Yasin, "Hyperbolic Valued Signed Measure," International Journal of Mathematics Trends and Technology (IJMTT), vol. 55, no. 7, pp. 515-522, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V55P567