Volume 55 | Number 8 | Year 2018 | Article Id. IJMTT-V55P576 | DOI : https://doi.org/10.14445/22315373/IJMTT-V55P576
In this article we investigate the structure of a ring R with involution of second kind admitting a generalized skew-derivation G satisfying one of the following
(i) G([x,x*])+[x,x*]ϵZ(R)
(ii) G(xᵒx*)ϵZ(R)
(iii) G([x,x*]) xᵒx*ϵZ(R)
(iv) G (xᵒx*) xᵒx*ϵZ(R)
(v) G (xᵒx*) [ x,x*]ϵZ(R)
for all xϵR.
[1] J.C. Chang, “On identity h(x)=af(x)+g(x)b” Taiwanese J. Math. vol. 7, pp.103-113, 2003.
[2] J.C. Chang, “Generalized skew derivations with annihilating Engel conditions” Taiwanese J. Math. vol.7,pp.103-113, 2008.
[3] J.C. Chang , “Generalized skew derivations with nilpotent values on Lie ideals” Monatsh. Math. vol. 161, pp.155-160, 2010.
[4] H.W. Cheng and F. Wei “Generalized skew derivationson rings” Adv. Math. (China) vol. 35,pp. 237-243 2006.
[5] T.K. Lee, “Generalized skew derivations characterized by acting on zero products” Pacific J. Math. vol. 216, pp. 293-301, 2004.
[6] M.N.Daif and H.E. Bell “Remarks on derivations on semiprime rings” Intern. J. Math. Math. Sci. vol. 15(1), pp. 205-206 ,1992.
[7] V.De.Filippise and S.Huang”Generalized derivations on semiprime rings” Bull. Korean Math. Soc. vol.48(6), pp.1253-1259, 2011.
[8] M.N.Daif and H.E.Bell “On derivations and commutativity in prime rings”Acta math. Hunger vol.66, pp. 205-206, 1995.
[9] I.N.Herstein”A note on derivations” Canad. Math. Bull. vol. 21,pp. 369-370 1978.
Asma Ali, Kapil Kumar, MD Hamidur Rahaman, "A Note on Generalized Skew Derivations on Rings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 55, no. 8, pp. 593-602, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V55P576