Volume 56 | Number 4 | Year 2018 | Article Id. IJMTT-V56P536 | DOI : https://doi.org/10.14445/22315373/IJMTT-V56P536
In this paper, we introduce a new class of convex function which is known as harmonically convex function. It is shown that harmonically log-convex function implies that harmonically convex functions which implies that harmonically quasi-convex functions. Results proved in this paper may stimulate further research in this field.
[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2007), 1294-1308.
[2] M. S. Bazaraa, D. Hanif, C. M. Shetty, et al. Nonlinear programming theory and algorithms(second edition)[M]. The United States of America: John Wiley and Sons, 1993.
[3] M. A. Choudhary and T. A. Malik, Harmonic convex function and Harmonic variational inequalities, Inter. J. Math. trends and Technology, 54(4)(2018), 320-324.
[4] I. Iscan, Hermite-Hadamard type inequalities for Harmonically convex functions. Hacettepe, J. Math. Stats., 43(6)(2014), 935-942.
[5] M. A. Noor, Advanced Convex Analysis and Optimization Lectures Notes, CIIT, (2014-2017).
[6] M. A. Noor and K. I. Noor, Harmonic variational inequalities, Appl. Math. Inf. Sci., 10(5)(2016), 1811-1814.
[7] M. A. Noor, K. I. Noor, Some implicit methods for solving harmonic variational inequalities, Inter. J. Anal. Appl. 12(1)(2016), 10-14.
[8] M. A. Noor, K. I. Noor, and M. U. Awan. Some characterizations of harmonically log-convex func- tions. Proc. Jangjeon. Math. Soc., 17(1)(2014), 51-61.
[9] M. A. Noor, K. I. Noor, and S. Iftikar, Hermite-Hadamard inequalities for harmonic non convex functions, MAGNT Research Report. 4(1)(2016), 24-40.
[10] M. A. Noor, K. I. Noor, and S. Iftikar, Integral inequalities for differentiable relative harmonic preinvex functions, TWMS J. Pure Appl. Math. 7(1)(2016), 3-19.
[11] M. A. Noor, K. I. Noor, and S. Iftikar, Integral inequalities of Hermite-Hadamard type for harmonic (h, s)-convex functions, Int. J. Anal. Appl., 11(1)(2016), 61-69.
[12] M. A. Noor, K. I. Noor, S. Iftikar, and C. Ionescu, Some integral inequalities for product of harmonic log-convex functions, U. P. B. Sci. Bull., Series A, 78(4)(2016), 11-19.
[13] M. A. Noor, K. I. Noor, S. Iftikar, and C. Ionescu, Hermite-Hadamard inequalities for co-ordinated harmonic convex functions, U. P. B. Sci. Bull., Series A, 79(1)(2017), 24-34.
Masood Ahmed Choudhary , ToseefAhmed Malik, "Some properties of harmonic convex and harmonic quasi-convex functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 56, no. 4, pp. 252-257, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V56P536