Volume 56 | Number 5 | Year 2018 | Article Id. IJMTT-V56P550 | DOI : https://doi.org/10.14445/22315373/IJMTT-V56P550
We establish the symmetry reductions of (2+1)- Dimensional Modified Equal Width Wave Equation is subjected to the Lie’s classical method. Classification of its symmetry algebra into one- and two-dimensional subalgebras are carried out in order to facilitate its reduction systematically to (1+1)-dimensional PDEs and then to first or second-order ODEs.
1. G. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, (1989).
2. S. Padmasekaran, S.Rajeswari and G. Sivagami,Similarity Solution of Semilinear Parabolic Equations with Variable Coefficients,IJMAA,Volume 4, Issue 3A (2016), 201209.
3. S.Padmasekaran and S.Rajeswari,Solitons and Exponential Solutions for a Nonlinear (2+1)dim PDE, IJPAM,Volume 115 No. 9 2017, 121-130.
4. S. Padmasekaran and S. Rajeswari, Lie Symmetries of (2+1)dim PDEIJMTT,Volume 51 No. 6,11-2017.
5. S. Padmasekaran and S.Rajeswari,Solitons and Exponential Solutions for a Nonlinear (2+1)dim PDE, IJPAM,Volume 115 No. 9 2017, 121-130.
6. S. Padmasekaran and S. Rajeswari, Lie's Symmetries of (2+1)dim PDEIJMTT,Volume 51 No. 6,11-2017. 7
7. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, (1986).
8. A. Ahmad, Ashfaque H. Bokhari, A. H. Kara, F. D. Zaman, Symmetry Classifications and Reductions of Some Classes of (2+1)-Nonlinear Heat Equation, J. Math. Anal. Appl., 339: 175-181,(2008).
9. Z. Liu and C. Yang ,The application of bifurcation method to a higher-order KdV equation,J. Math. Anal. Appl., 275: 1-12, (2002).
10. R. M. Miura, Korteweg-de Vries equations and generalizations. A remarkable explicit nonlinear transformation, I.Math. Phys. 9: 1202-1204, (1968).
11. D. J. Korteweg and G. de Vries, On the Chans of Form of Long Waves Advancing in a Rectangular canal, and On a New type of Long Stationary Waves, Philosophical Magazine 39 (1985), 422-443.
12. F. Gungor and P. Winternitz, Generalized Kadomtsev Petviashvili equation with an infinitesimal dimensional symmetry algebra, J. Math. Anal. 276 (2002), 314-328.
13. F. Gungor and P. Winternitz, Equaivalence Classes and Symmetries of the Variable Coefficient Kadomtsev Petviashvili Equation, Nonlinear Dynamics 35 (2004), 381-396.
14. P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 1986.
15. N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel Publishing Company, The Netherlands, 1985.
16. R.E. Grundy, Similarity solutions of the nonlinear diffusion equation, Quart. Appl. Math.,37 (1979) 259-280.
17. D.L. Hill, J.M. Hill, Similarity solutions for nonlinear diffusion- further exact solutions, J. Eng. Math., 24 (1990) 109-124. 18. J.M. Hill, Similarity solutions for nonlinear diffusion- a new integration procedure, J. Eng.Math., 23 (1989) 141-155.
S. Padmasekaran, R. Asokan, K. Kannagidevi, "Lie Symmetries of (2+1)-dimensional Modified Equal Width Wave Equation," International Journal of Mathematics Trends and Technology (IJMTT), vol. 56, no. 5, pp. 372-379, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V56P550