Volume 56 | Number 6 | Year 2018 | Article Id. IJMTT-V56P551 | DOI : https://doi.org/10.14445/22315373/IJMTT-V56P551
R. Asokan, E. Nakkeeran, T. Shanmuga Priya, "Identification of HPM and ADM for the (n+1)-dimensional Equal Width Wave Equation with Diffusion and Damping term," International Journal of Mathematics Trends and Technology (IJMTT), vol. 56, no. 6, pp. 380-391, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V56P551
1. Z. Odibat, S. Momani, Chaos Solitons Fractals, in press.
2. J.H. He, Comput. Methods Appl. Mech. Engrg. 178,(1999),257.
3. J.H. He, Int. J. Non-Linear Mech., 35 (1), (2000), 37.
4. M. El-Shahed, Int. J. Nonlin. Sci. Numer. Simul., 6 (2),(2005),163.
5. J.H. He, Appl. Math. Comput., 151, (2004), 287.
6. J.H. He, Int. J. Nonlin. Sci. Numer. Simul., 6 (2),(2005),207.
7. J.H. He, Phys. Lett. A ,374, (4-6), (2005), 228.
8. J.H. He, Chaos Solitons Fractals, 26 (3), (2005), 695.
9. J.H. He, Phys. Lett. A, 350, (1-2), (2006), 87.
10. J.H. He,Appl. Math. Comput., 135, (2003), 73.
11. J.H. He, Appl. Math. Comput.,156, (2004), 527.
12. J.H. He, Appl. Math. Comput., 156,(2004), 591.
13. J.H. He, Chaos Solitons Fractals, 26, (3), (2005), 827. 11
14. A. Siddiqui, R. Mahmood, Q. Ghori, Int. J. Nonlin. Sci. Numer. Simul., 7 (1), (2006), 7.
15. A. Siddiqui, M. Ahmed, Q. Ghori, Int. J. Nonlin. Sci. Numer. Simul., 7 (1), (2006), 15.
16. J.H. He, Int. J. Mod. Phys. B, 20 (10), (2006), 1141.
17. S. Abbasbandy, Appl. Math. Comput., 172, (2006), 485.
18. S. Abbasbandy, Appl. Math. Comput., 173, (2006), 493.
19. S.Padmasekaran and S.Rajeswari,Solitons and Exponential Solutions for a Nonlinear (2+1)dim PDE, IJPAM,Volume 115 No. 9 2017, 121-130.
20. S. Padmasekaran and S. Rajeswari, Lies Symmetries of (2+1)dim PDEIJMTT,Volume 51 No. 6,11-2017.
21. S. Padmasekaran and S. Rajeswari, Solution of Semilinear Parabolic Equations with Vari- able Coefficients
22. G. Adomian. A review of the decomposition method in applied mathematics., J Math Anal Appl, (1988), 135, 501-544.
23. F.J. Alexander, J.L. Lebowitz . Driven diffusive systems with a moving obstacle: a variation on the Brazil nuts problem. J Phys (1990), 23, 375-382.
24. F.J. Alexander, J.L. Lebowitz.,On the drift and diffusion of a rod in a lattice uid. J Phys, (1994), 27, 683-696.
25. J.D. Cole., On a quasilinear parabolic equation occurring in aerodynamics. J Math Appl, (1988), 135, 501-544.
26. He J.H. Homotopy perturbation technique. Comput Methods Appl Mech Eng, (1999), 178, 257-262.
27. J.H. He.,Homotopy perturbation method: a new nonlinear analytical technique., Appl Math Comput, (2003), 13, (2-3), 73-79.
28. J.H. He.,A simple perturbation method to Blasius equation. Appl Math Comput, (2003), (2-3), 217-222.
29. Morrison, P. J., Meiss, J. D., Carey, J. R.: Scattering of RLW solitary waves, Physica D 11 ,(1984), 324-336.