Volume 56 | Number 7 | Year 2018 | Article Id. IJMTT-V56P568 | DOI : https://doi.org/10.14445/22315373/IJMTT-V56P568
The AutographiX system conjectured M1^2 (G)/n <= M2^2 (G)/m for the simple graph G with n vertices and m edges. We prove that the result holds for the general Zagreb indices of l^th barycentric subdivision graphs at [1, ).
[1] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π - electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535--538.
[2] I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399--3405.
[3] T. Balaban, I.Motoc, D. Bonchev and O.Mekenyan, Topological indices for structure activity correlations, Topics Curr. Chem. 114 (1983), 21 - 55.
[4] T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, Topological indices for structure activity correlations, Topics Curr. Chem. 114 (1983) 21--55.
[5] R. Todeschini and V. Consoni, Handbook of Molecular Descriptors, Wiley-VCH, New York, 2002.
[6] S. Nikolić, G. Kovačević and A. Miličević, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113--124.
[7] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83--92.
[8] G. Caporossi, P. Hansen, Variable neighbourhood search for extremal graphs: 1. The AutographiX system, Discrete Math. 212 (2000) 29--44.
[9] B. Liu and Z. You, A Survey on Comparing Zagreb Indices, MATCH Commun. Math. Comput. Chem. 65 (2011), 581-593.
[10] A. Miličević, S. Nikolić, On Variable Zagreb indices, Croat. Chem. Acta. 77 (2003) 97--101.
[11] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195--208.
[12] G. Britto Antony Xavier, E. Suresh and I. Gutman, Counting relations for general Zagreb indices, Kragujevac Journal of Math. 38 (2014) 95--103.
[13] X. Li and H. Zhao, Trees with the first smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57--62.
[14] H. Zhang and S. Zhang, Unicyclic graphs with the first three smallest and largest values of the first general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006) 427--438.
[15] S. Zhang, W. Wang and T.C.E. Cheng, Bicyclic graphs with the first three smallest and largest values of the first general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006) 579--592.
[16] M. Liu and B. Liu, Some properties of the first general Zagreb index, Australas. J. Combin. 47 (2010) 285--294.
[17] Jonathan L. Gross, Jay Yellen, Graph Theory and its Applications, Second edition. CRC Press.
[18] A. Ilićand D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009), 681 - 687.
[19] D. Vukicevic, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J Math. Chem. 46 (2009), 1369 - 1376.
A. Selvakumar, K. Agilarasan, "Some Results on General Zagreb Indices," International Journal of Mathematics Trends and Technology (IJMTT), vol. 56, no. 7, pp. 527-529, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V56P568