Composition Operators on Weighted Orlicz Sequence Spaces

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2018 by IJMTT Journal
Volume-57 Number-2
Year of Publication : 2018
Authors : Heera Saini Aditi Sharma and Neetu Singh
  10.14445/22315373/IJMTT-V57P516

MLA

Heera Saini Aditi Sharma and Neetu Singh"Composition Operators on Weighted Orlicz Sequence Spaces", International Journal of Mathematics Trends and Technology (IJMTT). V57(2):106-114 May 2018. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.

Abstract
In this paper, we study the boundedness of composition operators between any two weighted Orlicz sequence spaces

Reference
[1] S. Chen, Geometry of Orlicz spaces, Dissertations Math.(Rozprawy Mat.) 356(1996), 1-204.
[2] L. Drewnowski and W. Orlicz, A note on modular spaces. XI, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16(1968), 877-882.
[3] Y. Cui , H. Hudzik, R. Kumar and L. Maligranda Composition operators in Orlicz spaces, J. Aust. Math. Soc. 76 (2004) 189-206.
[4] H. Hudzik and M. Krbec, On non-e ective weights in Orlicz spaces Indag. Math. N. S. 18(2007), 215-231.
[5] H. Hudzik and L. Maligranda, Amenya norm equals Orlicz norm in general Indag. Math. N. S. 11(2000), 573-585.
[6] J. Ishii, On equivalence of modular function spaces Proc. Japan acad. 35(1959), 551-556.
[7] M. A. Krasnoselkii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Noordho , Graningen, 1961.
[8] S. G. Krein, Ju. I. Petunin and E. M. Semenov, Intepolation of linear operators, AMS Translation of Math. Monographs 54, Providence, RI 1982.
[9] R. Kumar, Composition operators on Orlicz spaces, Integral Equations and Operator Theory 29 (1997), 17-22.
[10] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function Spaces, Vol. 97, Springer-Verlag, Berlin-New York, 1979.
[11] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Univ. Estadual de Campinas, Campinas SP, Brazil, 1989.
[12] L. Maligranda, Some remarks on Orlicz's interpolation theorem, Studia Math. 95 (1989), 43-58.
[13] J. Musilek, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer- Verlag, Berlin-New York, 1983.
[14] V. I. Ovchinnikov, The methods of orbits in interpolation theory, Math. Rep. 1 (1984), 349-516.
[15] S. Petrovic, A note on composition operators, Math. Vestnik 40 (1988), 147-151.
[16] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, New York, 1991.
[17] M. M. Rao and Z. D. Ren, Applications of Orlicz spaces, Marcel Dekker, New York, 2002.
[18] I. V. Shargin, The operator of superposition in modular function spaces, Studia Math.43 (1972), 61-75.
[19] I. V. Shargin, Conditions for the imbedding of classes of sequences, and their conse- quences, Mat. Zametki 20 (1976), 681-692: English translation: Math Notes 20 (1976), 942-948 (1977).
[20] R. K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc. 45 (1974), 80-82.
[21] R. K. Singh, Composition operators induced by rational functions, Proc. Amer. Math. Soc. 59 (1976), 329-333.
[22] R. K. Singh and A. Kumar, Compact composition operators, J. Austral. Math. Soc. 28 (1979), 309-314.
[23] R. K. Singh and J. S. Manhas, Composition operators on function spaces, North Holland Math. Studies 179, Amsterdam, 1993.
[24] H. Takagi, Compact weighted composition operators on Lp-spaces, Proc. Amer. Math. Soc.,116 (1992), 505-511.
[25] H. Takagi and K. Yokouchi, Multiplication and composition operators between two Lp