Volume 57 | Number 4 | Year 2018 | Article Id. IJMTT-V57P535 | DOI : https://doi.org/10.14445/22315373/IJMTT-V57P535
This paper develops pseudo-differential algebraic functions which unequivocally incorporate most typical conventional systems and problems of the parabolic limit value discerned forms. Therefore, to achieve this, this paper develops a pseudo-differential parabolic operator’s theory in anisotropic spaces. A significant calculus is developed for various classical symbols which are defined universally by ℝ𝑛+1 ∗ ℝ𝑛+1 . A periodical procedure regarding the symbolic calculus in a cylinder such that 𝑇 𝑛 ∗ ℝ is developed. The Garding’s inequality is exhibited for its appropriate operators as well as definite estimates for the vital criterion of the Sobolev anisotropic spaces.
1) Beals, R. (1975). A general calculus of pseudodifferential operators. Duke Math. J, 42(1), 1-42.
2) Costabel, M. (1990). Boundary integral operators for the heat equation. Integral Equations and Operator Theory, 13(4), 498-552.
3) Grubb, G., &Solonnikov, V. A. (1990). A Solution of Parabolic pseudo-differential initial-boundary value problems. Journal of Differential Equations, 87(2), 256-304.
4) Hörmander, L. (2013). Linear partial differential operators (Vol. 116). Springer.
5) Hunt, C., &Piriou, A. (1969). Opérateurs pseudo-différentielsanisotropesd’ordre variable. CR Acad. Sci. Paris, 268, 28-31.
6) Noon, P. J. (1988). The single layer heat potential and Galerkin boundary element methods for the heat equation (Doctoral dissertation, The University of Maryland).
7) Piriou, A. (1970). Uneclassed'opérateurs pseudo-différentiels du type de Volterra. In Annales de l'institut Fourier (Vol. 20, No. 1, pp. 77-94).
Ibrahim Hamza, Isamaldien Banani, "On Pseudo-Differential Algebraic Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 57, no. 4, pp. 249-255, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V57P535