References
[1] Abbas M. ,Rhoades, B., Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009), 262-269.
[2] Abbas M., Khan A.R., Nazir, T., Coupled common fixed point results in two generalized metric spaces, Appl.Math. Comput. 217 (2011) 6328-6336.
[3] Abbas M., Nazir, T., Doric, C., Common fixed point of mappings satisfying (E.A.) in generalized metric spaces, Appl.Math. Comput. 218 (2012) 7665- 7670.
[4] Abdeljawad T., Meir-Keeler.
[5] Abdeljawad, T, Aydi, H, Karapınar, E: Coupled fixed points for Meir-Keeler contractions in ordered partial metric spaces.
Math. Probl. Eng. 2012, Article ID 327273 (2012).
[6] Agarwal R., Karapinar E., Remarks on some coupled fixed point theorems in 𝐺 −metric spaces, Fixed Point Theory Appl.
2013 (2013) 2.
[7] Agarwal R.P., O’Regan D., Shahzad N., Fixed point theory for generalized contractive maps of Meir–Keeler type, Math.
Nachr. 276 (2004) 3–22.
[8] Aydi H.Postolache M., Shatanawi W., Coupled fixed point results for 𝜓, 𝜙 − weakly contractive mappings in ordered
𝐺 −metric spaces, Comput. Math. Appl. 63 (2012) 298-309.
[9] Aydi H., Karapinar E., A Meir–Keeler common type fixed point theorem on partial metric spaces, FixedPoint Theory
Appl.2012 (2012) 26.
[10] Aydi H., Karapinar E., New Meir–Keeler type tripled fixed point theorems on ordered partial metric spaces, Math. Prob.Eng.
2012(2012)(Article ID 409872).
[11] Aydi H., Damjanovic B., Samet B., Shatanawi W., Coupled fixed point theorems for non-linear contractions in partially ordered 𝐺 −metric spaces, Math. Comput. Model. 54 (2011) 2443-2450.
[12] Aydi H., Shatanawi W., Vetro C., On generalized weakly 𝐺 −contractionmapping in 𝐺 −metric spaces, Comput. Math. Appl.
62 (2011) 4222-4229.
[13] Banach S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math 3(1922)
133-181.
[14] Chang T.H., Chen C.M., A common fixed point theorem forthe weaker Meir-Keeler type function, Appl. Math. Lett..
23(2010) 252-255
[15] Chen C.M., Chang T.H., Common fixed point theorems for a weaker Meir-Keeler type function in cone metric space, Appl.
Math. Lett. 23(2010) 1336-1341.
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 57 Issue 4- May 2018
ISSN: 2231-5373 http://www.ijmttjournal.org Page 276
[16] Choudhury B.S., Maity P., Coupled coincidence point result in generalized metric spaces, Math. Comput.Model. 54 (2011)
73-79.
[17] Chugh, R., Kadian, T., Rani,A., Rhoades, B.E., Property P in G-metric spaces,Fixed Point TheoryAppl. 2010 (2010), 12p
(Article ID 401684).
[18] Ciric L., on contractive type mappings, Math. Balkanica 1 (1971) 52-57.
[19] Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal.Appl. 194 (1995) 293-303.
[20] Kadelburg Z., Radenovic S., Meir-Keeler type conditions in abstract metric spaces, Appl. Math. Lett. 24 (2011) 1411-1414.
[21] Karpagam S., Agrawal S., Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps, Nonlinear Anal.
74 (4) (2011) 1040–1046.
[22] Meir A. Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl. 28(1969) 326329.
[23] Mohamed A., A Meir–Keeler type common fixed point theorem for four mappings, Opuscula Math. 31 (1)(2011) 5–14.
[24] Mustafa, Z, Aydi, H, Karapınar, E: On common fixed points in image-metric spaces using (E.A) property. Comput.Math.
Appl. 64(6), 1944-1956 (2012)
[25] Mustafa, Z, Aydi, H, Karapınar, E., Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces, Fixed Point Theory Appl.2012 (2012) 71.
[26] Mustafa, Z., Awawdeh, F., Shatanawi, W, Fixed point theorem for expansive mappings in 𝐺 − metric spaces,
Int.J.Contemp.Math. Sci. 5 (2010) 49-52.
[27] Mustafa, Z: A new structure for generalized metric spaces with applications to fixed point theory. Ph.D. thesis, The University of Newcastle, Australia (2005)
[28] Mustafa, Z, Obiedat, H, Awawdeh, F: Some fixed point theorem for mapping on complete G-metric spaces. Fixed Point
Theory Appl. 2008, Article ID 189870 (2008)
[29] Mustafa, Z, Obiedat, H, A fixed point theorem of Reich in 𝐺 −metric spaces, Cubo.M.J. 12(01) (2010) 83-93.
[30] Mustafa, Z, Khandagiy, M, Shatanawi, W: Fixed point results on complete G-metric spaces. Studia Sci. Math. Hung. 48(3)
(2011)304-319.
[31] Mustafa, Z, Sims B., Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl.
2009, Article ID 917175 (2009)
[32] Mustafa, Z, Sims B., A new approach to generalized metric spaces,J. Nonlinear Convex Anal.7(2)(2006) 289-297.
[33] Mustafa, Z, Sims, B., Some remarks concerning-metric spaces, in: Proc.Int.Conf. Fixed Point theory and Appl.alenciva
(Spain), July 2003, pp. 189-198.
[34] Mustafa, Z., Shatanawi, W, Bataineh, M: Existence of fixed point results in G-metric spaces. Int. J. Math. Math. Sci. 2009,
Article ID 283028 (2009).
[35] Obiedat, H., Mustafa, Z., Fixed point results on a nonsymmetric 𝐺 −metric spaces, JordenJ.Math.Stat. 3(2) (2010) (65-79).
[36] Park S., Rhoades B.E., Meir-Keeler type contractive conditions, Math. Jpn.26 (1981) 13-20.
[37] Piatek,B., On cyclic Meir-Keeler contractions in Metric spaces, Nonlinear Anal. 74 (1) (2011) 35-40.
[38] Saadati, R., Vaezpour, S., M., Vetro, P., Rhoades B.E., Fixed pointtheorems in generalized partially ordered 𝐺 −metric spaces, Math. Comput. Model, 52(2010) 797-801.
[39] Samet, B., Coupled fixed point theorems for a generalized Meir-Keelercontraction in partially ordered metric spaces, Nonlinear Anal. 74(2010) 4508-4517.
[40] Shatanawi W., Some fixed point theorem in ordered G-metric spaces and applications, Abstr. Appl. Anal. 2011 (2011). 11p
(Article ID 126205).
[41] Shatanawi W., Mustafa, Z.,Tahat, N., Some coincidence point theorems for nonlinear contraction in ordered metric spaces,
Fixed Point theory Appl.2011 (2011) 68.
[42] Shatanawi W., Fixed Point theory for contractive mappings satisfying Φ −maps in 𝐺 −metric spaces, Fixed Point theory
Appl. 2010 (2010), 9p Article ID 181650.
[43] Suzuki T., Fixed point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Nonlinear Anal.
64 (2006), 971–978.