Volume 57 | Number 4 | Year 2018 | Article Id. IJMTT-V57P540 | DOI : https://doi.org/10.14445/22315373/IJMTT-V57P540
For a jump graph J(G) a set D ⊂ V(J(G) is a dominating set if every vertex in V(J(G))-D is adjacent to at least one vertex in D. The domination number √(J(G)) of J(G) is the minimum cardinality of a total dominating set. The non bondage number bn(J(G)) of J(G) is the maximum cardinality among all sets of edges X⊆ E(J(G)) such that √( J(G) –X) =√(J(G)). A set D⊆ V(J(G)) is a strong dominating set if every vertex in V(J(G))-D has a neighbor u in D such that the degree of u is not smaller than the degree of v, The strong domination number √s(J(G)) og J(G) is minimum cardinality of a strong dominating set. The non bondage number bsn(J(G)) of a non empty jump graph J(G) is the maximum cardinality among all sets of edges X ⊆ E(J(G)) such that √s ( J(G) –X) = √s(J(G)). In this paper some results on the non bondage number, exact values of bn(J(G)) for some standard graphs are obtained. Also some result on the strong non bondage number and bondage number are established. Also Nordhaus-Gaddum type results are found.
[1] F. Harary, Graph theory, Addison wesley’ Reading Mass” 1969.
[2] V.R. Kulli’ “Theory of Domination in Graphs” Vishwa international publications, Gulbarga, India 2010
[3] T.W. Haynes, S.T. hedetniemi and P.J. Slater “ fundamentals of Domination in Graphs” Marcel Dekkar, Inc, New York (1998)
[4] V.R. Kulli, B. Janakiram ”The non bondage num ber of a graph, Graph theory Notes of New York”, New York Academy of Sciences, XXX (1996) 14-16
[5] E. Sampathkumar and L. puspa latha, Strong (weak) domination and domination balance in a graph, discrete Math.16191996) 235-242.
[6] K. Ebadi and L. Puspa Latha, The strong nonbondage number of a graph, international Forum,5 o.34 (2010) 1691-1996.
[7] J.F. Fink, M.S.Jacobson, I.F.Kinch and J. Roberts, The bondage number of a graph, Discrete Math.86(1990) 47-57.
[8] J. Ghoshal, R.Laskar, D.pillone and C. Wallis. Strong bondage and strong reinforcement number of graph,English congr,numerantinum 108(1995)33-42.
[9] F.Jaeger and C.payan,Relations du type Nordhaus-Gddum pour le nombre d’ absorption d’un graphe simple, C.R,Acad.Sci.Paries 274(1992) 728-730.
[10] R. Laskar and K. Peters, Vertex and edge domination paprameters in graphs, Congr.Numer,48(1985) 291-305.
[11] R.L Brooks, On coloring the nodes of a network, proc. Cambridge Philos.Soc.37(1941) 194-197.
[12] Y.B. Maralabhavi et .al., Domination number of jump Graphs International Mathematical Forum vol8, No.16 753-758 (2013).
N.Pratap Babu Rao, "On Non Bondage Number of a Jump Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 57, no. 4, pp. 292-295, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V57P540