Volume 57 | Number 5 | Year 2018 | Article Id. IJMTT-V57P545 | DOI : https://doi.org/10.14445/22315373/IJMTT-V57P545
This article presents best proximity point theorems for new classes of non-self mappings, known as generalized JSC-proximal contractions in metric spaces.Presented results and theorems are generalizations of [8] and [9]
[1]Fan. K, Extensions of two xed point theorems of F. E. Browder.Math Z.Vol. 112, 234-240(1969).
[2] Vetrivel. V, Veeramani. P, Bhattacharyya. P, Some extensions of Fan's best approximation theorem. Numer Funct Anal Optim. Vol. 13, 397- 402(1992).
[3] Sadiq Basha. S, Extensions of Banach's contraction principle. Numer Funct Anal Optim.31, 569-576(2010).
[4] Anuradha. J, Veeramani. P, Proximal pointwise contraction. Topol Appl.156(18):2942-2948(2009).
[5] Sankar Raj. V, Veeramani. P, Best proximity pair theorems for relatively non-expansive mappings. Appl General Topol. 10(1), 21-28(2009).
[6] Sadiq Basha. S, Best proximity points: global optimal approximate solution. J Glob Optim(2010).
[7] Sadiq Basha. S, Veeramani. P, Best Proximity pair theorems for multi- functions with open fibres. J Approx Theory. Vol.103, 119-129(2000).
[8] A.Jennie Sebasty Pritha and U.Karuppiah, Some Fixed Point theorems for JSC-contraction in Complete metric space,International Journal of Mathematics and its Applications, Vol. 5, 3B(2017), 179-183.
[9] Sadiq Basha. S and Shahzad. N, Best proximity point theorems for generalized proximal contractions, Fixed point theory and Appl, 42(2012).
A.Jennie Sebasty Pritha, Dr.U.Karuppiah, "Best proximity point theorems for generalized JSC- proximal contractions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 57, no. 5, pp. 320-330, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V57P545