Volume 57 | Number 6 | Year 2018 | Article Id. IJMTT-V57P555 | DOI : https://doi.org/10.14445/22315373/IJMTT-V57P555
Mohammed Nizam Uddin, Mohammad Monir Uddin, Muhammad Hanif, "Recent Updates in Two Competitive Algorithms for Model Reduction of Large-Scale Dynamical Systems," International Journal of Mathematics Trends and Technology (IJMTT), vol. 57, no. 6, pp. 402-407, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V57P555
[1] A. Antoulas, Approximation of Large-Scale DynamicalSystems, ser.Advances in Design and Control. Philadelphia, PA: SIAM Publications,2005, vol. 6.
[2] P. Benner, V. Mehrmann, and D. C. Sorensen, Dimension Reduction ofLarge-Scale Systems, ser. Lect. Notes Comput. Sci. EngSpringer- Verlag, Berlin/Heidelberg, Germany, 2005, vol. 45
[3] M. S. Tombs and I. Postlethwaite, “Truncated balanced realization of a stable non-minimal state-space system,” Internat. J. Control, vol. 46,no. 4, pp. 1319–1330, 1987.
[4] R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX+XB = C: Algorithm 432,” Comm. ACM, vol. 15, pp. 820–826, 1972.
[5] P. Benner and E. S. Quintana-Ort´ı, “Solving stable generalized Lyapunovequations with the matrix sign function,” Numer. Algorithms, vol. 20,no. 1, pp. 75–100, 1999.
[6] J.-R. Li and J. White, “Low rank solution of Lyapunov equations,” SIAMJ. Matrix Anal. Appl., vol. 24, no. 1, pp. 260–280, 2002.
[7] T. Penzl, “A cyclic low rank Smith method for large sparse Lyapunovequations,” SIAM J. Sci. Comput., vol. 21, no. 4, pp. 1401–1418, 2000.
[8] Y. Saad, “Numerical solution of large Lyapunov equation,” in SignalProcessing, Scattering, Operator Theory and Numerical Methods, M. A.Kaashoek, J. H. van Schuppen, and A. C. M. Ran, Eds. Birkhauser, ¨1990, pp. 503–511.
[9] U. Baur, “Control-Oriented Model Reduction for Parabolic Systems,” Ph.D. Thesis, TechnischeUniversitat Berlin, Berlin, Jan. 2008, iSBN 978-3639074178 Vdm Verlag Dr. Muller, available from http://www.nbn-resolving.de/urn:nbn:de:kobv:83-opus-17608.
[10] P. Benner and J. Saak, “Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state ofthe art survey,” GAMM Mitteilungen, vol. 36, no. 1, pp. 32–52, August2013.
[11] M. M. Uddin, “Computational methods for model reduction of large-scale sparse structured descriptor systems,” Ph.D. Thesis,Otto-von- Guericke-Universitat, Magdeburg, Germany, 2015. [Online]. Available: http://nbn-resolving.de/urn:nbn:de:gbv:ma9:16535
[12] D. C. Villemagne and R. E. Skelton, “Model reduction using a projectionformulation,” Internat. J. Control, vol. 46, pp. 2141–2169, 1987.
[13] E. J. Grimme, “Krylov projection methods for model reduction,” Ph.D.Thesis, Univ. of Illinois at Urbana-Champaign, USA, 1997.
[14] P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by Pade´ approximation via the Lanczos process,” IEEE Trans. Comput.-AidedDesign Integr. Circuits Syst., vol. 14, pp. 639–649, 1995.
[15] S. Gugercin, A. C. Antoulas, and C. A. Beattie, “H2 model reductionfor large-scale dynamical systems,” SIAM J. Matrix Anal. Appl., vol. 30,no. 2, pp. 609–638, 2008.
[16] K. Gallivan, A. Vandendorpe, and P. Van Dooren, “Model reductionof MIMO systems via tangential interpolation,” SIAM J. Matrix Anal.Appl., vol. 26, no. 2, pp. 328–349, 2004.
[17] Y. Chahlaoui and P. Van Dooren, “A collection of benchmark examples for model reduction of linear time invariant dynamical systems,”University of Manchester, SLICOT Working Note 2002–2, Feb. 2002.