Volume 58 | Number 2 | Year 2018 | Article Id. IJMTT-V58P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V58P515
In this paper, our focus is to define and study the boundednessfor s-paratopological groups. Premeager property for s-paratopological groups is discussed. It is proved that every open subgroup of a quasi-bounded, premeager s-paratopological group is premeager. For bounded homomorphisms on s-paratopological group, new notions ๐๐๐ -quasi bounded and ๐๐ ๐๐ -quasi bounded homomorphisms are introduced and discussed.
[1] A.V. Arhangel'skii, E.A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005), 107-119.
[2] A. V. Arhangel'skii, M. Tkachenko,Topological Groups and Related Structures, Atlantis Press and World Sci., 2008.
[3] K. H. Azar, Bounded topological groups, arXiv: 1003.2876.
[4] N. Biswas, On some mapping on topological spaces, Bull. cal. Math. Soc., 61(1969), 127-135.
[5] E. Bohn, J. Lee, Semi-topological groups, Amer. Math. Monthly, 72(1965), 996-998.
[6] S.G. Crossley, S.K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci., 22(1971), 123-126.
[7] S.G. Crossley, S.K. Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.
[8] R. Engelking, General Topology (revised and completed edition), Heldermann Verlag, Berlin, 1989.
[9] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19(1932), 184-197.
[10] M. Khan and R. Noreen, On Paratopologized Groups, Analele Uni. Oradea Fasc. Math. Tom XXIII 2(2016), 147-156.
[11] A.B. Kharazishvili, Nonmeasurable sets and functions, Mathematical Studies 195, North-Holland, 2004.
[12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
[13] F. Lin and S. Lin, pseudobounded or ฯ-pseudobounded paratopological groups, Filomat, 25(3)(2011), 93-103.
[14] S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Coll. Math., 8(1961), 47-53.
[15] A. Neubrunnovยดa, On certain generalizations of the notion of continuity, Mat. ฤasopis, 23(1973), 374-380.
[16] R. Noreen and M. Khan , Quasi-boundedness of Irresolute paratopological groups, (http./doi.org/10. 1080/25742558.2018.1458553),cogent Mathematics and Statistics, (2018) 5: 1458553.
[17] O.V. Ravsky, Paratopological groups I, Matem. Studii , 16 (2001), 37-48.
Rafaqat Noreen, "Quasi-Boundedness of s-Paratopological Groups," International Journal of Mathematics Trends and Technology (IJMTT), vol. 58, no. 2, pp. 107-111, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V58P515