Volume 58 | Number 2 | Year 2018 | Article Id. IJMTT-V58P519 | DOI : https://doi.org/10.14445/22315373/IJMTT-V58P519
Let G = (V,E) be a simple connected graph. The diameter of a connected graph G is denoted by diam(G) and is the maximum eccentricity in a graph G. In this article, we establish the results for diameter of Middle graph [M(G)] of a graph G and the equality relation between the diameter of graph G, Middle graph [M(G)] and Total graph [T(G)] of a graph G.
[1] F. Buckley, F. Harary, Distance in Graph Theory, Addison-Wesley, Redwood, 1990.
[2] P. Dankelmann and S. Mukwembi, The distance concept and distance in graphs, in: I, Gutman and B. Furtula (Edds.), Distance in Molecular Graphs-Theory, University of Kragujevac, Kragujevac, 2012, 3–48.
[3] T. Došlić, A. Graovac, F. Cataldo and O. Ori, Notes on some distancebased invariants for 2-dimensional square and comb. lattices, Iran. J. Math. sci. Inf., 2010, 5, 61-68.
[4] G. H. Fath-Tabar and A. R. Ashrafi, The hyper-Wiener polynomial of Graphs, Iran. J. Math. sci. Inf., 2011, 6, 67-74.
[5] W. Goddard and O. R. Oellermann, Distance in graphs, in: M. Dehmer (Ed.). Structural Analysis of complex networks, Birkhäuser, Dordrecht, 2011, 49–72.
[6] T. Hamada and T. Yoshimura, Traversability and connectivity of the middle graph of a graph, Disc. Math., 1976, 14, 247-255.
[7] F. Harary, Graph-Theory, Addison-Wesely, 1969.
[8] A. Mahmiani, O. Khormali and A. Iranmanesh, The explicit relations among the edge versions of detour index, Iran. J. Math. sci. Inf., 2008, 3, 1-12.
[9] H. R. Maimani, Median and center of zero divisor graph of commutative semigroups, Iran. J. Math. sci. Inf., 2008, 3, 69-76.
[10] H. S. Ramane, A. B. Ganagi and I. Gutman, On a conjecture of the diameter of line graphs of graphs of diameter two, Kragujevac J. Math., 2012, 36, 59-62.
[11] H. S. Ramane, I. Gutman and A. B. Ganagi, On Diameter of line graphs, Iran. J. Math.psci. Inf., 2013, 8, 105-109.
Keerthi G. Mirajkar, Bhagyashri R. Doddamani, "On the Diameter of Middle Graphs and Total Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 58, no. 2, pp. 131-134, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V58P519