Volume 58 | Number 4 | Year 2018 | Article Id. IJMTT-V58P537 | DOI : https://doi.org/10.14445/22315373/IJMTT-V58P537
This paper is on the two parameter Laplace type Bimodal distribution. After discussing distributional properties, order statistics were developed and discussed. Inferential aspects were discussed and estimates of the parameters were obtained through Method of Moments and Maximum Likelihood Estimation techniques. Minimum unbiased estimator of the location parameter and best linear unbiased estimator of the location and scale parameter were also obtained.
[1] Cramer, H. (1946): Mathematical Methods of Statistics, Asia Publishing House.
[2] David. H.A. (1981): Order Statistics, John Wiley & Sons, Ins. New York
[3] Eisenberger, I. (1964): ‘Genesis of Bimodal distributions’ techno metrics, p.357-363., vol.6.
[4] Feller, W. (1966). An Introduction to Probability Theory and Its Applications, Vol.II, New York, John Wiley & sons, NC.
[5] Govindarajulu, Z. (1966): Best linear estimates under symmetric censoring of the parameters of a double exponential population,
[6] Johnson, N.L. and Kotz, S. (1970): Continuous Univariate Distributions, john Wiley Sons, New York.
[7] Kameda, T. (1928): On the reduction of frequency curves, SckandinaviskAktuarietidskrift, 11.
[8] Laplace, P.S. (1774): Memoire sur la pobabilite des causes par les evenemens, Memoiries de mathematique et de Physique, 6.
[9] Lloyd, E.H. (1952): Least square estimation of location and scale parameters using order statistics, Biometrica, 39
[10] Rao, C.R. (1965): Linear Statistical Inference and its applications, Wiley Eastern.
D V Ramana Murty, G Arti, M. VivekanandaMurty, "Two Parameter Laplace Type Bimodal Distribution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 58, no. 4, pp. 277-285, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V58P537