Volume 58 | Number 4 | Year 2018 | Article Id. IJMTT-V58P540 | DOI : https://doi.org/10.14445/22315373/IJMTT-V58P540
Mohammed Barmaki, "Coupon Collector Problem on Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 58, no. 4, pp. 306-308, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V58P540
[1] Boneh, Arnon and Hofri, Micha, "The Coupon-Collector Problem Revisited". Computer Science Technical Reports. Paper 807, e-Pubs Perdue University 1989.
[2] Amy N. Myers And Herbert S. WILF, Some new aspects of the coupon collector problem, SIAM J. DISCRETE MATH. Vol. 17, No. 1, pp. 1?17 (2003).
[3] Bendikov, A. Pittet,Ch. Roman Sauer, Spectral distribution and $L2$-isoperimetric profile of Laplace operators on groups, - Arxiv preprint arXiv:0901.0271, 2009 - arxiv.org.
[4] Coulhon,Th.Grigor'yan, A. On diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains. Duke Math. J. 89 (1997), 133-199. MR1458975.
[5] Coulhon,Th.Grigor'yan,A.Pittet, Ch. A geometric approach to on-diagonal heat kernel lower bounds on groups. Ann. Inst. Fourier 51 (2001), 1763-1827. MR1871289.
[6] Gretete, D. Stabilit\'e du comportement des marches aléatoires sur un groupe localement compact, Ann. Inst. Henri PoincaréeProbab. Stat. 44(2008), no. 1, 129-142 (French, with English and French summaries).
[7] Hebisch, W. On heat kernels on Lie groups. Math. Zeit. 210 (1992), 593-605. MR1175724.
[8] Kesten, H. Full Banach mean values on countable groups, Math. Scand. 7 (1959) 146-156.
[9] Mustapha, S., C.R. Acad.Sci. Paris, Ser.I 340(2005).
[10] Mustapha, S.,Lower estimates for random walks on a class of amenable. p-adicgroups,Journal URL, vol. 14 , no 51, pp. 1513-1531(2009).
[11] Pittet, C., and Saloff-Coste, L. Random walks on finite rank Solvable Groups}, (May 2002).