Volume 59 | Number 2 | Year 2018 | Article Id. IJMTT-V59P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V59P515
Parameswari.R, Rajeswari.R, "Total Magic Cordial Labeling of Split Graph of Cycle, Wheel and Fan Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 59, no. 2, pp. 97-100, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V59P515
[1] I.Cahit(1987), “Cordial graphs: A weaker version of graceful and harmonious graphs”,Ars Combin.23, 201–208.
[2] I.Cahit(2002),, “Some totally modular cordial graphs”, Discuss. Math. Graph Theory 22 247–258.
[3] Gallian (2017), J.A, “A dynamic survey of graph labeling”, The Electronic Journal of Combinatory 18, #DS6.
[4] I.Cahit(1990), “On cordial and 3-equitable labeling of graphs”, Util. Math., 37189 -198.
[5] Z.Szaniszl'o (1994),“k-equitable labeling of cycles and some other graphs”, Ars Combin.37 49–63.
[6] A.Kotzig, A. Rosa (1970), “Magic valuations of finite graphs”, Canad. Math. Bull. 13 4,451–461.
[7] M.Baca,Y. Lin, M. Miller, R. Simanjuntak (2001), “New constructions of magic and antimagic graph labelling”, Utilitas Math. 60 229–239.
[8] W.D.Wallis,E.T.Baskoro,M.Miller, Slamin(2000), “Edge-magic total labelings”, Austral. J. Combin. 22 177–190.
[9] W.D. Wallis(2001), “Magic Graphs, Birkhauser Boston,.
[10] R.Parameswari,R.Rajeswari (2013), “Total Bi magic labeling and Total Magic Cordial labeling of Paley Digraphs”, IEEE Conference, PRIME.
[11] R.Parameswari,R. Rajeswari (2015), “Total Magic Cordial Labeling Of (Pn, K1), Gear And Shadow Graphs”, International Journal of Pure and Applied Mathematics, 101 No. 6, 993-1001.
[12] R.Parameswari (2015), “Total magic cordial labeling of square and shadow graph”, Applied Mathematical Sciences, Hikari Publication, 1312- 885X,No.9,25-28.