Volume 59 | Number 3 | Year 2018 | Article Id. IJMTT-V59P524 | DOI : https://doi.org/10.14445/22315373/IJMTT-V59P524
In public key cryptography, discrete logarithm problem plays a vital part. In this paper we contemplate the discrete logarithm issue in circulant matrices over a limited field.
[1] A. Mahalanobis, A note on using finite non-abelian p-groups in the MOR cryptosystem, http://arxiv.org/abs/cs/0702095.
[2] A. Mahalanobis, A simple generalization of the ElGamal cryptosystem to non abeliangroups II, http://arxiv.org/abs/0706.3305.
[3] A. J. Menezes (ed.), Aplications of Finite Fields, Kluwer, 1993.
[4] A. Menezes and Y.-H. Wu, The discrete logarithm problem inGL.(n; q),Ars Comb.47 (1997), 23–32.
[5] J.H. Silverman, Fast multiplication in finite fields GF.2N/, in: CHES’99, LNCS 1717, pp. 122–134, 1999.
[6] J.H. SilvermanRings with low multiplicative complexity, Finite Fields and their Appl. 6 (2000), 175–191.
[7] P. J. Davis, Circulant Matrices, Chelsea, 1994.
[8] R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge University Press, 1997.
[9] W.C.Waterhouse, Circulant-StyleMatrices closed undermultiplication, Lin. Multilin.Algebra18 (1985), 197–206.
Anu Pius, Senthil Kumar, "A Study on Discrete Logarithm Problem in Circulant Matrices," International Journal of Mathematics Trends and Technology (IJMTT), vol. 59, no. 3, pp. 153-156, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V59P524