Volume 59 | Number 3 | Year 2018 | Article Id. IJMTT-V59P530 | DOI : https://doi.org/10.14445/22315373/IJMTT-V59P530
M.Annapoopathi, N.Meena, "Strong Efficient Edge Domination Number of Some Cycle Related Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 59, no. 3, pp. 202-208, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V59P530
Let 𝐺 = (𝑉, 𝐸) be a simple graph. A subset S of E(G) is a strong (weak) efficient edge dominating set of G if │Ns[e]S│ = 1 for all eE(G) [│Nw[e]S│ = 1 for all e E(G)] where Ns(e) ={f / f E(G) & deg f ≥ deg e}[Nw (e) ={f / f E(G) & deg f ≤ deg e}] and Ns[e]=Ns(e) {e}[Nw[e] = Nw (e) {e}]. The minimum cardinality of a strong efficient edge dominating set of G (weak efficient edge dominating set of G) is called a strong efficient edge domination number of G and is denoted by 𝛾′ 𝑠𝑒 (𝐺) [𝛾 ′ 𝑤𝑒 (𝐺)]. In this paper, the strong efficient edge domination number of some cycle related graphs are studied.
[1] D.W.Bange, A.E.Barkauskas, L.H.Host, and P.J.Slater. Generalized Domination and Efficient Domination in Graphs. Discrete Math., 159:1 – 11, 1996.
[2] D.W.Bange, A.E.Barkauskas, and P.J.Slater. Efficient Dominating Sets in Graphs. In R.D.Ringeisen and F.S.Roberts, Editors, Applications of Discrete Mathematics, pages 189 – 199. SIAM, Philadelphia, PA, 1988.
[3] Dominngos M.Cardoso, J.Orestes Cerdefra Charles Delorme, Pedro C.Silva , Efficient Edge Domination in Regular Graphs, Discrete Applied Mathematics 156 , 3060 - 3065(2008).
[4] V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga,India (2010).
[5] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater (Eds), Domination in Graphs: Advanced Topics, Marcel Decker, Inc., New York 1998.
[6] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in Graphs, Marcel Decker, Inc., New York 1998.
[7] C.L.Lu, M-T.Ko, C.Y.Tang, Perfect Edge Domination and Efficient Edge Domination in Graphs, Discrete Appl.Math. 19227-250(2002)
[8] S.L.Mitchell and S.T.Hedetniemi, Edge Domination in Trees. Congr. Number.19489-509 ( 1977)
[9] E.Sampath Kumar and L.Pushpalatha, Strong Weak Domination and Domination Balance in a Graph, Discrete Math., 161:235 - 242, 1996.
[10] G.Santhosh , A Study on Integral Sum Graphs and Various Graph Theoretic Parameters, Ph.D thesis, 2003.