Volume 59 | Number 3 | Year 2018 | Article Id. IJMTT-V59P530 | DOI : https://doi.org/10.14445/22315373/IJMTT-V59P530
Let 𝐺 = (𝑉, 𝐸) be a simple graph. A subset S of E(G) is a strong (weak) efficient edge dominating set of G if │Ns[e]S│ = 1 for all eE(G) [│Nw[e]S│ = 1 for all e E(G)] where Ns(e) ={f / f E(G) & deg f ≥ deg e}[Nw (e) ={f / f E(G) & deg f ≤ deg e}] and Ns[e]=Ns(e) {e}[Nw[e] = Nw (e) {e}]. The minimum cardinality of a strong efficient edge dominating set of G (weak efficient edge dominating set of G) is called a strong efficient edge domination number of G and is denoted by 𝛾′ 𝑠𝑒 (𝐺) [𝛾 ′ 𝑤𝑒 (𝐺)]. In this paper, the strong efficient edge domination number of some cycle related graphs are studied.
[1] D.W.Bange, A.E.Barkauskas, L.H.Host, and P.J.Slater. Generalized Domination and Efficient Domination in Graphs. Discrete Math., 159:1 – 11, 1996.
[2] D.W.Bange, A.E.Barkauskas, and P.J.Slater. Efficient Dominating Sets in Graphs. In R.D.Ringeisen and F.S.Roberts, Editors, Applications of Discrete Mathematics, pages 189 – 199. SIAM, Philadelphia, PA, 1988.
[3] Dominngos M.Cardoso, J.Orestes Cerdefra Charles Delorme, Pedro C.Silva , Efficient Edge Domination in Regular Graphs, Discrete Applied Mathematics 156 , 3060 - 3065(2008).
[4] V.R.Kulli, Theory of Domination in Graphs, Vishwa International Publications, Gulbarga,India (2010).
[5] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater (Eds), Domination in Graphs: Advanced Topics, Marcel Decker, Inc., New York 1998.
[6] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in Graphs, Marcel Decker, Inc., New York 1998.
[7] C.L.Lu, M-T.Ko, C.Y.Tang, Perfect Edge Domination and Efficient Edge Domination in Graphs, Discrete Appl.Math. 19227-250(2002)
[8] S.L.Mitchell and S.T.Hedetniemi, Edge Domination in Trees. Congr. Number.19489-509 ( 1977)
[9] E.Sampath Kumar and L.Pushpalatha, Strong Weak Domination and Domination Balance in a Graph, Discrete Math., 161:235 - 242, 1996.
[10] G.Santhosh , A Study on Integral Sum Graphs and Various Graph Theoretic Parameters, Ph.D thesis, 2003.
M.Annapoopathi, N.Meena, "Strong Efficient Edge Domination Number of Some Cycle Related Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 59, no. 3, pp. 202-208, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V59P530