Volume 5 | Number 2 | Year 2014 | Article Id. IJMTT-V5P529 | DOI : https://doi.org/10.14445/22315373/IJMTT-V5P529
In this paper, we prove common fixed point theorems for pairs of weakly compatible mappings along with E.A. and (CLRS) properties using implicit relations in Menger spaces.
[1] M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 27 (2002), 181-188. <
[2] O. Hadzic, Some theorems on the fixed point in probabilistic metric and random normed spaces, Bull. Unione Mat. Ital. (6), 1-B (1982), 381-391.
[3] O. Hadzic. A fixed point theorem in menger spaces. Publ.Inst. Math. Beograd, 20;107:112,1979.
[4] O. Hadzic and E.Pap. Fixed point theory in probabilistic metric spaces. Kluwer Academic Publishers, Dordrechi, 2001.
[5] T.L., Hicks, Fixed point theory in probabilistic metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 13 (1983), 63-72. <
[6] K. Iseki, Fixed point theorems in 2-metric spaces, Math. Sem. Notes, Kobe Uni., 3 (1975), 133-136.
[7] M. Imdad and J. Ali, Jungck common fixed point theorems in fuzzy metric spaces , Mathematical Communication 11(2006), 153-163. <
[8] M. Imdad and J. Ali, Jungck's common fixed point theorem and E.A. property, Acta Mathematica Sinica 24 (2008), 87-94.
[9] M. Imdad, B. D. Pant, S. Chauhan, Fixed point theorems in Menger spaces using The (CLRST ) property and applications, Journal of Nonlinear Analysis and Optimization: Theory and Applications (in press).
[10] G. Jungck and B.E.Rhoades, Fixed points for set valued functions without continuity, Indian Journal of pure and applied mathematics, vol. 29, no. 3, pp. 227- 238,1998.
[11] G. Jungck, Common fixed point for noncontinuous nonself mappings on non metric Spaces, Far East J. Math.Sci. 4(2) (1996), 199-212.
[12] S.Jain , B. Singh, A fixed point theorem in Menger space through weak compatibility ,J. Math. Anal.Appl. 301(2005),439.
[13] J. K. Kohli and S. Vashistha, Common Fixed Point Theorems in Probabilistic Metric Spaces, Acta Mathematica Hungarica, Vol. 115, No. 1-2, 2007, pp. 37-47.
[14] S.N. Mishra, Common fixed points of compatible mappings in probabilistic metric Spaces, Math. Japon. 36(1991),283.
[15] H. K. Pathak, Y.J. Cho and S.M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc.34(1997),247-257. <
[16] V.M. Sehgal, A. Bharucha-Reid, T., Fixed points of contraction mappings in probabilistic metric spaces, Math. Systems Theory 6 (1972), 97-102.
[17] Shi-Sen Chang, Nan-Jing Huan, On the generalized 2-metric spaces andprobabilistic 2-metric spaces with applications to fixed point theory, Math.Japon. 34 (1989), 885-900. <
[18] Y.Shi, L.Ren and X.Wang, The extension of fixed point theorems for set valued mappings, J. Appl.Math. Computing, 13 (2003), 277-286.
[19] W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly Compatible mappings in fuzzy metric spaces, Journal of Applied Mathematics, vol. 2011, Article ID 637958, 14 pages, 2011.
[20] W. Sintunavarat and P. Kumam, Common fixed point theorems for R- weakly commuting in fuzzy metric spaces, Annali dell’Universita di Ferrara, DOI: 10.1007/s11565-012-0150-z ( in press).
[21] Zeng Wenzhi, Probabilistic 2- metric spaces, J. Math. Research Expo. 2 (1987), 241-245.
Vishal Gupta , Balbir Singh , Sanjay Kumar, "Some Common Fixed Point Theorems Using Implicit Relations in Menger Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 5, no. 2, pp. 182-194, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V5P529