Volume 60 | Number 3 | Year 2018 | Article Id. IJMTT-V60P528 | DOI : https://doi.org/10.14445/22315373/IJMTT-V60P528
We prove the generalized Hyers-Ulam Stability of the Quadratic functional equation
[1] S.Alizadeh, F. Moradlou, Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach, Int. J. Nonlinear Anal. Appl.Vol. 7, 63-75, 2016.
[2] J.Brzdek, L. Ca dariu and K. Cieplinski, Fixed point theory and the Ulam stability, J. Function Spaces , Art.ID 829419, 2014.
[3] L.Ca dariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., Art. ID 4 ,2003.
[4] L.Ca dariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., Vol. 346, 43-52, 2004.
[5] L.Ca dariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl., Art. ID 749392, 2008.
[6] J.Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Vol. 74, 305-309, 1968.
[7] Dong Yun Shin, Hassan Azadi Kenary, N. Sahami, Hyers-Ulam-Rassias Stability Of Functional Equation in NAB-Spaces, Inter. J. Pure and Appl. Math.,Vol. 95 (1), 1-11, 2014.
[8] G.Isac and Th. M. Rassias, Stability of ψ-additive mappings: Applications to Nonlinear analysis, Inter. J. Math. Math. Sci., Vol.19, 219-228, 1996.
[9] M.S.Moslehian and Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal.-TMA , Vol. 69 ,3405-3408, 2008.
[10] S.Murthy, V.Govindhan, M.SreeShanmugaVelan, Solution and stability of two types of n-Dimensional Quartic Functional Equation in generalized 2- normed spaces, Int. J. Pure and Applied Math., 111( 2), 249-272, 2016.
[11] S.Murthy, V.Govindhan and M.SreeShanmugaVelan, Generalized U – H Stability of New n – type of Additive Quartic Functional Equation in Non – Archimedean, Int. J. Math. Appl., 5 ( 2-A), 1- 11, 2017.
[12] S.Murthy&V.Govindhan, General solution and generalized hu (Hyers – Ulam) Statbility of New Dimension cubic functional equation. in Fuzzy Ternary Banach Algebras: Using Two different Methods, Int. J. Pure and Applied Math.,113( 6),2017.
[13] P.Narasimman, K. Ravi and Sandra Pinelas, Stability of Pythagorean Mean Functional Equation, Global J. Math., 4(1), 398-411, 2015.
[14] V.Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory , Vol. 4 , 91-96, 2003.
[15] K.Ravi, J. M. Rassias, Sandra Pinelas and P. Narasimman, The Stability of a Generalized Radical reciprocal Quadratic Functional Equation in Felbin’s Space, Pan American Mathematical Journal, 24(1), 75-92, 2014.
[16] K.Ravi, J. M. Rassias, Sandra Pinelas and R. Jamuna, A Fixed Point Approach to the Stability Equation in Paranormed Spaces, Pan American Mathematical Journal,24(2),61-84,2014.
Sandra Pinelas , V.Govindan, K.Tamilvanan, "New Type of Quadratic Functional Equation and Its Stability," International Journal of Mathematics Trends and Technology (IJMTT), vol. 60, no. 3, pp. 180-186, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V60P528