Volume 61 | Number 1 | Year 2018 | Article Id. IJMTT-V61P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V61P505
Dust-ion-acoustic solitary waves in a multi-component unmagnetized dusty plasma containing negatively charged dust particles, nonisothermal electrons and nonthermal ions, have been investigated. The Sagdeev potential approach is applied to study the large amplitude solitary waves. The intermediate integral forms of Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) equations are derived under different approximations to obtain the solutions of small amplitude solitary waves of different forms. Spiky and Explosive solitary waves as well as double layers are found to exist. The parameters , , , , an d M , representing the population of nonthermal ions, ratio of free and trapped electron’s temperatures, Mach number, temperature ratio of ion and free electrons, and the density ratio respectively, are found to play a very important role in the formation of solitary waves.
[1] E.C. Whipple, Rep. Prog. Phys. 44 (1981) 1197.
[2] C.K. Geortz, Rev. Geophys. 27 (1989) 271.
[3] T.G. Northrop, Phys. Scripta. 45 (1992) 475.
[4] P. Bliokh, V. Sinitsin, and V. Yaroshenko, Dordrecht: Kluwer Acad. Publ. (1995).
[5] F. Verheest, Dordrecht: Kluwer Acad. Publ. (2000).
[6] P.K. Shukla, and A.A. Mamun, Institute of Physics Publishing Ltd. (2002).
[7] H. Thomas, G.E. Morfill, and V. Dammel, Phys. Rev. Lett. 73 (1994) 652.
[8] G.S. Selwyn, J. Applied Phys. Part 1 32 (1993) 3068.
[9] B. Walch, M. Horanyi, and S. Robertson, Phys. Rev. Lett. 75 (1995) 538.
[10] R.L. Merlino, A. Barkan, C. Thompson, and N. D’ Angelo, Phys. Plasmas 5 (1998) 1607.
[11] A.Piel, and A. Melzer, Plasma Phys. Controlled Fusion 44 (2002) R1
[12] A.Ivlev, and G. Morfill, Phys. Rev. E 63 (2001) 026412.
[13] A.A. Mamun, R.A. Cairns, and P.K. Shukla, Phys. Plasmas 3 (1996) 702.
[14] J.X. Ma, and J.Y. Liu, Phys. Plasmas 4 (1997) 253.
[15] J.Y. Liu, and J.X. Ma, Chin. Phys. Lett. 14 (1997) 432.
[16] B.S.Xie, K. He, and Z.Q. Huang, Phys. Lett. A 247 (1998) 403.
[17] S.Ghosh, S. Sarkar, M. Khan, and M.R. Gupta, Phys. Plasmas 7 (2000) 3594.
[18] F.Verheest, Planet. Space Sci. 40 (1992) 1.
[19] S.I.Popel, A.P. Golub’, T.V. Losseva, A.V. Ivlev, S.A. Khrapak, and G.Morfill, Phys. Rev. E 67 (2003) 056402.
[20] Y.F. Li, J.X. Ma, and J.J. Li, Phys. Plasmas 11 (2004) 1366.
[21] S K. El-Labany, and W.F. El-Taibany, Phys. Plasmas 10 (2003) 989.
[22] Y.H. Chen, and M.Y. Yu, Phys. Plasmas 1 (1994) 1868.
[23] A.Barkan, N. D’Angelo, and R.L. Merlino, Planet. Space Sci. 44 (1996) 239.
[24] Y.Nakamura, H. Bailung, and P.K. Shukla, Phys. Rev. Lett. 83 (1999) 1602.
[25] H.Washimi, and T. Taniuti, Phys. Rev. Lett. 17 (1966) 996.
[26] R.Z.Sagdeev, Review of Plasma Physics, New York Consultant Bureau 4 (1966) 52.
[27] L.Davis, R. Lust, and A. Schluter, Zeit Natur Forsch 13a (1958) 916.
[28] N.N.Rao, Planet. Space Sci., 38 (1990) 543.
[29] T.K. Baluku, and M.A. Hellberg, Phys. Plasmas 15 (2008) 123705.
[30] K. Devi, J. Sarma, G.C. Das, A. Nag, and Rajkumar Roychoudhury, Plant. Space Sci. 55 (2007) 1358.
[31] A.N. Dev, M.K. Deka, J. Sarma, and N.C. Adhikary, Journal of the Korean Physical Society 67 (2015) 339.
[32] A.N. Dev, G.C. Das, and J. Sarma, International Journal of Mathematical Science, 13 (2014) 41.
[33] P.K.Shukla, Phys. Plasma 8 (2001) 1791
[34] A.A.Mamun, P.K. Shukla, and F. Verheest, Nova Science (New York) 8 (2002) 30.
[35] W.S.Duan, and J. Parkes, Phys. Rev. E 68 (2003) 067402.
[36] R.Das, and K. Karmakar, Can. J. Phys. 91 (2013) 839.
[37] H.Schamel, Plasma Phys. 14 (1972) 905.
[38] H.Schamel, J. Plasma Phys. 9 (1973) 377.
[39] Y.Nejoh, Phys. Plasmas 4 (1997) 2813.
[40] S.K. El-Labany, Phys. Plasmas 10 (2003) 4217.
[41] S.K. El-Labany, and W.F. El-Taibany, Phys. Plasmas 10 (2003) 4685.
[42] S.K. El-Labany, and W.F. El-Taibany, Plasma Phys. 70 (2004) 69.
[43] M.Waleed Moslem, Phys. Plasmas 12 (2005) 122309.
[44] G.C.Das, S.G. Tagare, Phys. Fluids 17 (1974) 1331.
[45] D.Dorranian, and A. Sabetkar, Phys. Plasmas 19 (2012) 013702.
[46] N.C.Adhikary, M.K. Deka, A.N. Dev, and J. Sarma, Phys. Plasmas 21 (2014) 083703.
[47] G.C.Das, S.G. Tagare, and J. Sarma, Planet. Space Sci. 46 (1998) 417.
[48] D.J.Wu, D.Y. Huang, and C.G. Falthammar, Phys. Plasmas 3 (1996) 2879.
Banajit Sarmah, Anuradha Devi, Jnanjyoti Sarma, "Non Perturbative Approach for Dust Acoustic Waves in Plasma with Non Thermal Ions and Trapped Electrons," International Journal of Mathematics Trends and Technology (IJMTT), vol. 61, no. 1, pp. 32-42, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V61P505