Volume 61 | Number 1 | Year 2018 | Article Id. IJMTT-V61P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V61P508
Dr.V.Jeyanthi, Mrs.Radhika V.S,, "Applying Floyd‘s Algorithm for Solving Neutrosophic Shortest Path Problems," International Journal of Mathematics Trends and Technology (IJMTT), vol. 61, no. 1, pp. 58-63, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V61P508
[1] K.Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, vol.31, 1989, pp.343-349.
[2] N.Bhatia, Algorithms for Some Fuzzy Network Problems Using Ranking Function, (Master Thesis, Thapar university Pataiala147004(PUNJAB), School of Mathematics and Computer Applications, 2009.
[3] S.Broumi, M. Talea, A. Bakali, F. Smarandache, Single Valued Neutrosophic Graphs, Journal of New Theory, N 10, 2016, pp. 86-101.
[4] S.Broumi, M. Talea, A. Bakali, F. Smarandache, On Bipolar Single Valued Neutrosophic Graphs,Journal of New Theory, N11, 2016, pp.84-102.
[5] S.Broumi, M. Talea, A. Bakali, F. Smarandache, Interval Valued Neutrosophic Graphs, (2016) in press.
[6] S.Broumi, A. Bakali, M, Talea, and F, Smarandache, Isolated Single Valued Neutrosophic Graphs. Neutrosophic Sets and Systems, Vol. 11, 2016, pp.74-78
[7] S.Broumi, F. Smarandache, M. Talea and A. Bakali, An Introduction to Bipolar Single Valued Neutrosophic Graph Theory. Applied Mechanics and Materials, vol.841, 2016, 184-191.
[8] S.Broumi, M. Talea, F. Smarandache and A. Bakali, Single Valued Neutrosophic Graphs:Degree, Order and Size, 2016 IEEE International Conference on Fuzzy Systems (FUZZ), 2016, pp.2445-2451
[9] S.Broumi, Bakali, M. Talea, and F. Smarandache, A. Computation of Shortest Path Problem in a Network with Single Valued Neutrosophic Number Based on Ranking Method, 2016 (submitted)
[10] S.Broumi, A. Bakali, M. Talea and F. Smarandache, M. Ali, Shortest Path Problem Under Bipolar Neutrosophic Setting, 2016 (submitted).
[11] S.Broumi, A. Bakali M. Talea, F. Smarandache, and, Shortest Path Problem Under Interval Valued Neutrosophic Setting , 2016 (submitted)
[12] P.Chi and P. Liu, An extended TOPSIS method for the multiple attribute decision making problems based on interval neutrosophic set,Neutrosophic Set and Systems,1, 2013, pp. 1-8.
[13] E.W.Dijikstra, A note on two problems in connexion with graphs, Numerishe Mathematik, 1,1959, pp. 269-271.
[14] P.Jayagowri and G. Geetha Ramani, Using Trapezoidal Intuitionistic Fuzzy Number to Find Optimized Path in a Network, Volume 2014, Advances in Fuzzy Systems, 2014, 6 pages.
[15] A.Kumar and M. Kaur, A New Algorithm for Solving Shortest Path Problem on a Network with Imprecise Edge Weight, Applications and Applied Mathematics, Vol. 6, Issue 2, 2011, pp.602 – 619.
[16] A.Kumar, and M. Kaur, Solution of fuzzy maximal flow problems using fuzzy linear programming. World Academy of Science and Technology. 87: 28-31, (2011).
[17] S.Majumder and A. Pal, Shortest Path Problem on Intuitionistic Fuzzy Network, Annals of Pure and Applied Mathematics, Vol. 5, No. 1, November 2013, pp. 26-36.
[18] S.Okada and M. Gen, Fuzzy shortest path problems, Computers and Industrial Engineering, vol 27, N1-4, 1994, pp.465-468.
[19] F.Smarandache, A unifying field in logic. Neutrosophy, neutrosophic probability, set and logic, American Research Press, Rehoboth, 1998.
[20] F.Smarandache, A geometric interpretation of the neutrosophic set — A generalization of the intuitionistic fuzzy set, Granular Computing (GrC), 2011 IEEE International Conference, 2011, pp.602– 606 .
[21] A.Thamaraiselvi and R.Santhi, A New Approach for Optimization of Real Life Transportation Problems in Neutrosophic Environment, Mathematical Problems in Enginnering,2016, 9 pages.
[22] I.Turksen, ―Interval valued fuzzy sets based on normal forms,‖ Fuzzy Sets and Systems, vol.20,1986, pp. 191-210.
[23] H.Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, ―Single valued Neutrosophic Sets, Multisspace and Multistructure 4, 2010, pp. 410-413.
[24] L.Zadeh, Fuzzy sets. Inform and Control, 8, 1965, pp.338-353.