Volume 61 | Number 1 | Year 2018 | Article Id. IJMTT-V61P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V61P509
Elliptic-type integrals have their importance and potential in certain problems in radiation physics and nuclear technology. A number of earlier works on the subject contains several interesting unifications and generalizations of some significant families of elliptic-type integrals. The present paper is intended to obtain certain new theorems on generating functions.The results obtained in this paper are of manifold generality and basic in nature. Beside deriving various known and new elliptic-type integrals and their generalizations these theorems can be used to evaluate various Euler-type integrals involving a number of generating functions.
[1]Ayant F,Y. An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT), 31(3) (2016), 142-154.
[2] Berger, M.J. and Lamkin, J.C. Sample calculation of gamma ray penetration into shelters, Contribution of sky shine and roof contamination, J. Res. N.B.S., 60 (1958), 109–116.
[3]. Bjorkberg, J.and Kristensson,G. Electromagnetic scattering by a perfectly conducting elliptic disk, Canad. J.Phys., 65 (1987), 723–734.
[4]. Chaurasia V.B.L. and Meghwal R.C. Unified presentation of certain families of elliptic-type integrals to Euler integrals and generating function, Tamkang Journal of Mathematics, 43(4) (2012), 507-519.
[5]. Chaurasia, V.B.L.and Pandey, S.C. Unified elliptic-type integrals and asymptotic formulas, Demonstratio Mathematica, 41(3) (2008), 531–541.
[6] Epstein, L.F., Hubbell, J.H., Evaluation of a generalized elliptic-type integral, J. Res.N.B.S., 67 (1963), 1–17.
[7] Evans J. D. Hubbell J.H. and Evans V.D. Exact series solution to the Epstein-Hubbell generalized elliptic-type integral using complex variable residue theory, Appl. Math. Comp., 53 (1993), 173–189,
[8]. Gautam B.P., Asgar A.S. and Goyal A.N. On the multivariable A-function. Vijnana Parishad Anusandhan Patrika 29(4) (1986), 67-81.
[9]. L.F., Hubbell, J.H. Evaluation of a generalized elliptic-type integral, J. Res. N.B.S., 67 (1963), 1–17.
[10]. Glasser, M.L.and Kalla, S.L. Recursion relations for a class of generalized elliptic-type integrals,Rev. Tec. Ing. Univ. Zulia, 12 (1989), 47–50.
[11]. Hubbell, J.H., Bach, R.L.and Herbold, R.J. Radiation field from a circular disk source, J. Res. N.B.S., 65 (1961), 249–264.
[12] Kalla, S.L. Results on generalized elliptic-type integrals. Mathematical structure – computational mathematicsmathematical modelling, 2, 216–219, Sofia: Publ. House Bulgar. Acad. Sci. (1984).[11].
[13]. Kalla, S.L. The Hubbell rectangular source integral and its generalizations,Radiat. Phys. Chem., 41 (1993), 775– 781.
[14]. Kalla, S.L., Leubner, C.and Hubbell, J.H. Further results on generalized elliptic-type integrals, Appl. Anal., 25 (1987), 269–274.
[15] . Kalla, S.L.and Al-Saqabi,B. On a generalized elliptic-type integral,Rev.Bra. Fis., 16 (1986),145–156
[16]. Kalla, S.L., Leubner, C.and Hubbell, J.H. Further results on generalized elliptic-type integrals, Appl. Anal., 25 (1987), 269–274
[17]. Kalla, S.L. andTuan, V.K. Asymptotic formulas for generalized Elliptic-type integrals, Comput. Math. Appl., 32 (1996), 49–55.
[18]. Kaplan, E.L. Multiple elliptic integrals, J. Math. And Phys., 29 (1950), 69–75.
[19]. Klinga, P. and Khanna, S.M. Dose rate to the inner ear during Mosebauer experiments, Phys.Med. Biol., 28 (1983), 359–366.
[20]. Al-Saqabi, B.N. A generalization of elliptic-type integrals, Hadronic J., 10 (1987), 331–337.
[21]. Al-Zamel, A., Tuan, V.K.and Kalla, S.L. Generalized Elliptic-type integrals and asymptotic formulas, Appl. Math. Comput., 114 (2000), 13–25.
[22]. Mathai, A.M.and Saxena, R.K. The H-Function with Application in Statistics and other Disciplines. New York: Halsted Press (1978).
[23]. Prasad Y.N. Multivariable I-function , Vijnana Parisha Anusandhan Patrika 29 (1986), 231-237.
[24]. Prasad Y.N. and A.K.Singh. Basic properties of the transform involving and H-function of r-variables as kernel.Indian Acad Math, no 2, 1982, 109-115.
[25] Prathima J., Nambisan. V and Kurumujji S.K. A Study of I-function of Several Complex Variables, International Journal of Engineering Mathematics Vol (2014), 1-12.
[26]. Salman, M. Generalized elliptic-type integrals and their representations, Appl. Math. Comput., 181 (2) (2006), 1249–1256.
[27]. Saxena, R.K., Kalla and S.L. and Hubbell, J.H. Asymptotic expansion of a unified Elliptic-type integrals,Math. Balkanica, 15 (2001), 387–396.
[28]. Saxena, R.K. and Kalla, S.L. A new method for evaluating Epstein-Hubbell generalized elliptic-type integrals, Int. J. Appl. Math., 2 (2000), 732–742.
[29]. Saxena, R.K.and Pathan, M.A. Asymptotic formulas for unified Elliptic-type integrals, Demonstratio Mathematica, 36 (3) (2003), 579–589.
[30]. Siddiqi, R.N.: On a class of generalized elliptic-type integrals, Rev. Brasileira Fis., 19 (1989), 137–147.
[31]. Srivastava,H.M. and Bromberg, S. Some families of generalized elliptic-type integrals,Math. Comput. Modelling, 21 (3) (1995), 29–38.
[32]. Srivastava H.M. and Manocha H.L. A treatise on generating functions, Chichester. Ellis Howood Ltd, (1984).
[33]. Srivastava H.M. and Panda R. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24 (1975),119-137.
[34]. Srivastava H.M. and Panda R. Some expansion theorems and generating relations for the H-function of several complex variables II. Comment. Math. Univ. St. Paul. 25 (1976), 167-197.
[35]. Srivastava, H.M. and Siddiqi, R.N. A unified presentation of certain families of elliptic-type integrals related to radiation field problems, Radiat. Phys. Chem., 46 (1995), 303–315.
[36]. Srivastava, H.M. and Yeh, Yeong Nan. Certain theorem on bilinear and bilateral generating functions, ANZIAM J., 43 (2002), 567–574
F.Y.Ayant, "On Certain Generalized Families of Unified Elliptic- Type Integrals Pertaining to Euler Integrals, Generating Function and Multivariable A-Function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 61, no. 1, pp. 64-73, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V61P509