Volume 62 | Number 2 | Year 2018 | Article Id. IJMTT-V62P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V62P511
In this paper, we introduce the notion of conjugate flexible fuzzy soft bi- ideals in near –ring structures, level sets and given some characterizations of flexible fuzzy soft ideals in near-ring approximations. Also, we investigate the structure ofnormal flexible fuzzy soft subgroup.
[1] Anthony, J. M. and Sherwood, H. (1979). Fuzzy Group Redefined, J. Math.Anal. Appl, 69. 124 – 130.
[2] Abd-Allah AM, Omer RAK (1996). Fuzzy Partial Groups. Fuzzy Sets and Systems,82: 369-374.
[3] Aktas H and Cagman N (2007), Soft sets and Soft groups, InformnSci 177:2726-2735.
[4] Ali MI, Feng F, Liu X, Min WK and Shabir M(2009), On some new operations in soft set theory. Comput math Appl 57:1547-1553.
[5] Chengyi Z (1998). Fuzzy Prime Ideals and Prime Fuzzy Ideals. Fuzzy Sets and Systems, 94: 247-251.
[6] Dib KA, Hassan AM (1998). The Fuzzy Normal Subgroups, Fuzzy Sets and Systems 98: 393-402.
[7] Foster, D. H. (1979). Fuzzy Topological Groups, J. Math. Anal.Appl, 67. 549 – 564.
[8] Kim, JuPil. andBae, DeokRak. (1997). Fuzzy Congruence's in Groups, Fuzzy Sets and Systems, 85.115 – 120.
[9] Kumbhojkar, H. V. and Bapat, M. S. (1991). Correspondence Theorem for Fuzzy Ideals, Fuzzy Sets and Systems, 41. 213- 219.
[10] Massa'deh, M. O. (2007). Some Relations between Fuzzy and Lower Fuzzy Subgroups; Normal and Lower Normal Fuzzy Subgroups, DamascusUniversity Journal.
[11] Massa'deh, M. O., Al–Wade, Y. and Ismail, F. (2007). The Fuzzy Index and its Types, FJMS, 25.83-92.
[12] Massa'deh M (2008). Properties of Fuzzy Subgroups in particular the Normal Subgroups, Damascus University – Syrian Arab Republic, Doctorate Thesis.
[13] P.K.Maji, A.R. Roy and R. Biswas, An application of soft sets in a decision making problem, Compute, Math. Appl. 44 (2002), 1077-1083.
[14] P.K.Maji, R. Biswas and A.R. Roy, Soft set theory, Compute, Math, Appl. 45 (2003), 555-562.
[15] Majumdgar B and Samanta SK (2010), Generalised fuzzy soft sets. Compute math Appli 59:1425-1432.
[16] D.Molodtsov, Soft set theory - First results, Compute. Math, Appl. 37 (1999), 19-31.
[17] Rosenfeld, A. (1971). Fuzzy groups, J. Math. Anal. Appl, 35. 512 – 517.
[18] Rosenfeld, A. and Mordeson, J. N. and Bhutani, K. R. (2005). Fuzzy GroupTheory, Springer. Berlin.
[19] Syransu R (1998). The Lattice of all idempotent Fuzzy Subsets of Groupoid. Fuzzy Sets and Systems, 96: 239- 245.
[20] Sezgin A and AtagunAO (2011), An operations of soft sets. Compute Math Appli, 61(5):1457-1467.
[21] Sezgin A, Atagun AO and Aygun E (2012), A Note on soft near rings and idealistic soft near rings. Filomat 25(1):53-68.
[22] Tang J, Zhang X (2001). Product Operations in the Category of L –fuzzy groups. J. Fuzzy Math., 9: 1-10.
[23] V.Vanitha., G.Subbiah and M.Navaneethakrishnan (2016), On flexible fuzzy subgroups with flexible fuzzy order, international research journal of pure algebra-6(11), 436-442.
[24] V.Vanitha., G.Subbiah and M.Navaneethakrishnan (2018),Complex intuitionstic flexible fuzzy soft interior ideals over semi groups, international journal of mathematics trends and technology., vol.9 (4), 239-247.
[25] V.Vanitha., G.Subbiah and M.Navaneethakrishnan (2018),Flexible fuzzy soft M-structures under the extensions of molodtsov’s soft set theory , international journal of mathematical archive, vol.9 (9) , 89-94.
[26] V.Vanitha., G.Subbiah and M.Navaneethakrishnan (2018) ,Flexible fuzzy softification of group structures, international journal of scientific research in mathematical and statistical sciences, vol.9 (4), 25-31.
[27] Zadeh , L . A. (1965). Fuzzy sets, Inform. and Control, 8, 338 – 353.
V.Vanitha, G. Subbiah, M.Navaneethakrishnan, "Level Set of Measurable Conjugate Flexible Fuzzy Soft Bi-Ideals Over Near-Ring Structures," International Journal of Mathematics Trends and Technology (IJMTT), vol. 62, no. 2, pp. 75-80, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V62P511