Volume 62 | Number 3 | Year 2018 | Article Id. IJMTT-V62P522 | DOI : https://doi.org/10.14445/22315373/IJMTT-V62P522
In this paper, fractional order q-integrals and q-derivatives involving a basic analogue of I-function of two variables have been obtained. At the end of this paper, we give an application concerning the basic analogue of I-function of two variables and one variable and q-extension of the Leibniz rule for the fractional q-derivative for a product of two basic functions.
[1] M.H. Abu-Risha, M.H. Annaby, M.E.H. Ismail and Z.S. Mansour, Linear q-difference equations, Z. Anal. Anwend. 26 (2007), 481-494.
[2] R.P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Phil. Soc., 66(1969), 365-370.
[3] W.A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edin. Math. Soc., 15(1966), 135-140.[4] G.
[4] Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cam-bridge, 1990.
[5] L. Galue, Generalized Weyl fractional q-integral operator, Algebras, Groups Geom., 26 (2009), 163-178.
[6] L. Galue, Generalized Erdelyi-Kober fractional q-integral operator, Kuwait J. Sci. Eng., 36 (2A) (2009), 21-34.
[7] K.C. Gupta, and P.K. Mittal, Integrals involving a generalized function of two variables, (1972), 430-437.
[8] S. Kumari, T.M. Vasudevan Nambisan and A.K. Rathie, A study of I-functions of two variables, Le matematiche, 59(1) (2014), 285-305.
[9] Z.S.I. Mansour, Linear sequential q-difference equations of fractional order, Fract. Calc. Appl. Anal., 12(2) (2009), 159-178.
[10] P.K. Mittal and K.C. Gupta, On a integral involving a generalized function of two variables, Proc. Indian Acad. Sci. 75A (1971), 117-123
[11] R.K. Saxena, G.C. Modi and S.L. Kalla, A basic analogue of H-function of two variable, Rev. Tec. Ing. Univ. Zulia, 10(2) (1987), 35-38.
[12] R.K. Saxena, R.K. Yadav, S.L. Kalla and S.D. Purohit, Kober fractional q-integral operator of the basic analogue of the H-function, Rev. Tec. Ing. Univ. Zulia, 28(2) (2005), 154-158.
[13] R.K. Yadav and S.D. Purohit, On application of Kober fractional q-integral operator to certain basic hypergeometric function, J. Rajasthan Acad. Phy. Sci., 5(4) (2006), 437-448.
[14] R.K. Yadav and S.D. Purohit, On applications of Weyl fractional q-integral operator to generalized basic hypergeometric functions, Kyungpook Math. J., 46 (2006), 235-245.
[15] R.K. Yadav, S.D. Purohit and S.L. Kalla, On generalized Weyl fractional q-integral operator involving generalized basic hypergeometric function, Fract. Calc. Appl. Anal., 11(2) (2008),129-142.
[16] R.K. Yadav, S.D. Purohit, S.L. Kalla and V.K. Vyas, Certain fractional q-integral formulae for the generalized basic hypergeometric functions of two variables, Jourla of Inequalities and Special functions, 1(1) (2010), 30-38.
[17] R.K. Yadav, S.D. Purohit and V. K. Vyas, On transformation involving generalized basic hypergeometric function of two variables. Revista. Técnica de la Facultad de Ingenieria. Universidad del Zulia, 33(2) (2010), 1-12.
F.Y.Ayant, "On Transformation Involving Basic I-Function of Two Variables," International Journal of Mathematics Trends and Technology (IJMTT), vol. 62, no. 3, pp. 158-163, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V62P522