Volume 62 | Number 3 | Year 2018 | Article Id. IJMTT-V62P524 | DOI : https://doi.org/10.14445/22315373/IJMTT-V62P524
In this paper, we introduce and study new class ( , ) p of meromorphically univalent functions defined in E z z C a n d z { : 0 | | 1} . We obtain coefficients inequalities distortion theorems, radius of convexity, Closure theorems and modified Hadamard products. Finally we obtain application involving an integral transforms and neighbourhood properties for the class ( , ) p .
[1] J.Clunie, On meromorphic schlicht functions, J. London Math.Soc. (34) (1959), 215-216.
[2] B.A.Frasin and M.Darus, On certain meromophic functions with positive coefficients, South East Asian Bull. Math. 28 (2004), 615- 623.
[3] O.P.Juneja and T. R. Reddy, Meromorphic starlike univalent functions with positive coefficients, Ann.Univ. Mariae Curie Sklodowska. Sect A 39, (1985), 65-76.
[4] J.E.Miller, Convex meromorphic mapping and related functions, Proc. Amer.Math. Soc. 25 (1970), 220-228
[5] M.L.Mogra, T.R. Reddy and O.P. Juneja, Meromorphic univalent functions with positive coefficients’ Bull. Austral. Math. Soc. 32, (1985) 161-176.
[6] Ch.Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963) 221-235.
[7] W.C.Royster, Meromorphic starlike multivalent functions, Trans. Amer. Math. Soc.107 (1963). 300-308.
[8] A.Schild and H.Silverman,Convolutions of univalent functions with negative coefficients ,Ann.Univ.Mariea Curie-Sklodowska Sect,A 29 (1975) 99-107.
Sarikonda Sreelakshmi, Rajkumar N.Ingle, P.Thirupathi Reddy, "A New Subclass of Meromorphic Univalent Functions with Positive Coefficients Defined by Linear Operator," International Journal of Mathematics Trends and Technology (IJMTT), vol. 62, no. 3, pp. 170-177, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V62P524