Volume 63 | Number 2 | Year 2018 | Article Id. IJMTT-V63P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V63P514
S. Padmasekaran, C. Thangavelu, "The (n+1)-Dimensional Equal Width Wave Equation by Differential Transform Method (DTM)," International Journal of Mathematics Trends and Technology (IJMTT), vol. 63, no. 2, pp. 109-117, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V63P514
[1] Morrison . P.J., Meiss.J.D., Carey .J.R : Scattering of RLW Solitary Waves, Physica D 11.
[2] Zhou.J.K.,1986, Differential transform and its application for electrical circuits, Huazhong university Press,china.
[3] Jang.M.J., C.L.Chen and Y.CLiu,2001, Two dimensional Differential transform for Partial Differential Equations, Applied Mathematics and Computation,121:261-270
[4] Ayaz, Fatma,2003, On the Two Dimensional Differential Transform Method . Ap- plied Mathematics and Computation,143:361-314
[5] Ayaz, Fatma,2004 , Solution of the System of the Differential Equations using dif- ferential transform method . Applied Mathematics and Computation,147:547-567
[6] H O,S.H and C.K.Chen,1998, Analysis Of General Elastically and restrained Non- Uniform BeamsUsing Differential Transform Method . Applied Mathematical Modelling,22:219-234
[7] Ozdemir. O and Kaya,2006 ,Flapwise bending Vibration analysis of a rotating ta- pered Cantilever Bernouulli-Euler beam by Differential transform method . Journal of Sound and Vibration,289:413-420
[8] Ozgumus. O and Kaya,2006, Flapwise bending Vibration analysis of double ta- pered rotating Bernouulli-Euler beam by Differential transform method . Meccanica, 41:661-670
[9] Seval Catal,2008, Solution of free vibration equations of beam on elastic soil by using Differential transform method . Applied Mathematical Modelling ,32:1744-1757
[10] Mei.C, 2006, Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam . Computers and Structures, 86:1280-1284