Volume 63 | Number 2 | Year 2018 | Article Id. IJMTT-V63P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V63P515
In the present paper, we derive two theorem involving fractional q-integral operators of Erdélyi-Kober type and a basic analogue of multivariable Hfunction. Corresponding assertions for the Riemann-Liouville and Weyl fractional q-integral transforms are also presented. Several special cases of the main results have been illustrated in the concluding section.
[1] M.H. Abu-Risha, M.H. Annaby, M.E.H. Ismail and Z.S. Mansour, Linear q-difference equations, Z. Anal. Anwend. 26 (2007), 481-494.
[2] R.P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Phil. Soc., 66(1969), 365-370.
[3] W.A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edin. Math. Soc., 15(1966), 135-140.[4].
[4] L. Galue, Generalized Weyl fractional q-integral operator, Algebras, Groups Geom., 26 (2009), 163-178.
[5] L. Galue, Generalized Erdelyi-Kober fractional q-integral operator, Kuwait J. Sci. Eng., 36 (2A) (2009), 21-3.
[6] K.C. Gupta, and P.K. Mittal, Integrals involving a generalized function of two variables, (1972), 430-437.
[7] P.K. Mittal and K.C. Gupta, On a integral involving a generalized function of two variables, Proc. Indian Acad. Sci. 75A (1971), 117-123.
[8] Z.S.I. Mansour, Linear sequential q-difference equations of fractional order, Fract. Calc. Appl. Anal., 12(2) (2009), 159-178.
[9] R.K. Saxena, G.C. Modi and S.L. Kalla, A basic analogue of Fox’s H-function, Rev. Tec. Ing. Univ. Zulia, 6(1983), 139-143.
[10] R.K. Saxena, G.C. Modi and S.L. Kalla, A basic analogue of H-function, of two variables, Rev. Tec. Ing. Univ. Zulia, 10(2) (1987), 35-39.
[11] R.K. Saxena, R.K. Yadav, S.L. Kalla and S.D. Purohit, Kober fractional q-integral operator of the basic analogue of the H-function, Rev. Tec. Ing. Univ. Zulia, 28(2) (2005), 154-158.
[12] H.M. Srivastava and R. Panda, Some expansion theorems and generating relations for the H-function of severalcomplex variables. Comment. Math. Univ. St. Paul. 24 (1975),119-137.
[13] H.M. Srivastava and R. Panda, Some expansion theorems and generating relations for the H-function of severalcomplex variables II. Comment. Math. Univ. St. Paul. 25 (1976), 167-197.
[14] R.K. Yadav and S.D. Purohit, On application of Kober fractional q-integral operator to certain basic hypergeometric function, J. Rajasthan Acad. Phy. Sci., 5(4) (2006), 437-448.
[15] R.K. Yadav and S.D. Purohit, On applications of Weyl fractional q-integral operator to generalized basic hypergeometric functions, Kyungpook Math. J., 46 (2006), 235-245.
[16] R.K. Yadav, S.D. Purohit and S.L. Kalla, On generalized Weyl fractional q-integral operator involving generalized basic hypergeometric function, Fract. Calc. Appl. Anal., 11(2) (2008),129-142.
F.Y. Ayant, "Certain fractional q-derivative integral formulae for the basic analogue of multivariable H-function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 63, no. 2, pp. 118-123, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V63P515