Volume 64 | Number 1 | Year 2018 | Article Id. IJMTT-V64P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V64P505
In recent years, higher order topological indices have gained enormous importance because of their greater correlation with many chemical properties. One among them is leap hyper-Zagreb index which is based on both distance and degree. In this paper, we compute the expressions for first and second leap hyper-Zagreb indices of some nanostructures.
[1] K.Agilarasan, A. Selvakumar, Some bounds on forgotten topological index, Int. J. Math. Trends and Tech., vol. 56(7), pp. 521-523, 2018.
[2] A.R.Ashrafi, A. Loghman, PI index of armchair polyhex nanotubes, Ars Combinatoria, Vol. 80, pp. 193, 2006.
[3] A.Bahrami, J. Yazdani, Vertex PI index of V-phenylenic nanotubes and nanotori, Digest J. Nanomaterials and Biostructures, vol. 4(1) , 141-144, 2009.
[4] B.Basavanagoud, S. Patil, H. Deng, On the second order first Zagreb index, Iranian J. Math. Chem., vol. 8(3), pp. 299-311, 2017.
[5] B.Basavanagoud, E. Chitra, On the leap Zagreb indices of generalized xyz-point-line transformation graphs Txyz(G) when z=1, Int. J. Math. Combin., vol. 2, pp. 44-66, 2018.
[6] H.Deng, Catacondensed benzenoids and phenylenes with the extremal third-order Randi c' index, MATCH Commun. Math. Comput.Chem., vol. 64, pp. 471-496, 2010.
[7] M.R.Farahani, Computing 5GA index of V-phenylenic nanotubes and nanotori, Int. J. Chem. Model., vol. 5(1) , pp. 479-484, 2014.
[8] M. R.Farahani, Computing theta polynomial and theta index of V-phenylenic planar, nanotubes and nanotoris, Int. J. Theoretical Chem., vol.Vol. 1(1) , pp. 01-09, 2013.
[9] B.Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., vol. 53, pp. 1184-1190 , 2015.
[10] I.Gutman, N. Trinajstic , Graph theory and molecular orbitals, total electron energy of alternant hydrocarbons, Chem. Phys. Lett., vol. 17, pp. 535-538 , 1972.
[11] F.Harary, Graph Theory, Addison-Wesely, Reading, Mass, 1969.
[12] S.M.Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl. Math. Comput., 2016, DOI. 10.1007/s12190-016-1016-9.
[13] A.Heydari, B. Taeri, szeged index of nanotubes, MATCH Commun. Math. Comput. Chem., vol. 57, pp. 463-477, 2007.
[14] A.Heydari, B. Taeri, Wiener and Schultz indices of TUC4C8(S) nanotubes, MATCH. Commun. Math. Comput. Chem., vol. 57, pp. 665-676, 2007.
[15] H.Jiang, M. S. Sardar, M. R. Farahani , M. Rezaei, M. K. Siddiqui, Computing Sanskruti index of V-phenylenic nanotubes and nanotori, Int. J. pure Appl. Math., vol. 115(4) , pp. 859-865, 2017.
[16] K.G.Mirajkar, Y. B. Priyanka, On the reformulated Zagreb indices of certain nanostructures, Global J. Pure Appl. Math., vol. 13(2), pp.817-827, 2017.
[17] V.R.Kulli, College Graph Theory , Vishwa Int. Publ., Gulbarga, India, 2012.
[18] V.R.Kulli, Leap hyper-Zagreb indices and their polynomials of certain graphs, Int. J. current research in life Sci., vol. 7(10), pp. 2783-2791, 2018.
[19] A.M.Naji, N. D. Soner, I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim., vol. 2(2) , pp. 99-117 , 2017.
[20] M.J.Nikmehr, M. Veylaki, N. Soleimani, Some topological indices of V-phenylenic nanotube and nanotori, Optoelectron Adv. Mater-Rapid Comm., vol. 9(9) , pp. 1147-1149 , 2015.
[21] N.Soleimani, M. J. Nikmehr, H. A. Tavallae, Computation of the different topological indices of nanostructures, J. Natn. Sci. Foundation Sri- Lanka, vol. 43(2), pp. 127-133 , 2015.
[22] N.Soleimani, E. Mohseni, F. Rezaei, F. Khati, Some formulas for the polynomials and topological indices of nanostructures, Acta Chem. Iasi, vol. 24(2), pp. 122-138, 2016.
[23] N.D.Soner, A. M. Naji, The k-distance neighbourhood polynomial of a graph, Int. J. Math. Comput. Sci.WASET Conference Proceedings, Vol. 3(9) part XV, pp. 2359-2364 , 2016.
[24] H.Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., vol. 69, pp. 17-20, 1947.
B.Basavanagoud and Chitra.E, "On Leap Hyper-Zagreb Indices of Some Nanostructures," International Journal of Mathematics Trends and Technology (IJMTT), vol. 64, no. 1, pp. 30-36, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V64P505