Characterization of Einstein-Finsler Space With Special (α; β)-Metric

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2019 by IJMTT Journal
Volume-65 Issue-10
Year of Publication : 2019
Authors : Chandru K, Narasimhamurthy S. K
  10.14445/22315373/IJMTT-V65I10P511

MLA

MLA Style:Chandru K, Narasimhamurthy S. K   Characterization of Einstein-Finsler Space With Special (α; β)-Metric" International Journal of Mathematics Trends and Technology 65.10 (2019):77-82 .

APA Style: Chandru K, Narasimhamurthy S. K (2019). Characterization of Einstein-Finsler Space With Special (α; β)-Metric International Journal of Mathematics Trends and Technology,77-82

Abstract
In theory of relativity Einstein-Finsler metrics are very useful to study geometric structure of space-time and to build applications. In order to characterize Einstein-Finsler (α, β)-metrics, it is necessary to compute the Riemann curvature and the Ricci curvature. In this paper, we consider the special (α, β)-metric and obtained the Riemann curvature. Then we characterize the Einstein criterion for that metric, when β is a constant killing form. Further, we proved that the metric is Riemannian.

Reference

[1] P.L. Antonelli, A. Bna, & M.A. Slawiski, Seismic rays as Finsler geodesics. Nonlinear Anal. RWA 4, 711722, (2003).
[2] D. Bao, S. S. Chern, & Z. Shen, An introduction to Riemann-Finsler geometry. Springer. (2000).
[3] D. Bao, & C. Robles, On Ricci and flag curvatures in Finsler geometry. MSRI Series. Cambridge University Press, (2003).
[4] J. P. Bourguignon, Ricci curvature and Einstein metrics. In Global Differential Geometry and Global Analysis, 42-63, (1979).
[5] K. Chandru & S. K. Narasimhamurthy, On curvatures of homogeneous Finsler-Kropina space. Gulf Journal of Mathematics Vol 5, Issue 1, 73-83, (2017).
[6] X. Cheng, A class of Einstein (α; β)-metrics. Israel Journal of Mathematics 192, 221-249, (2012).
[7] X. Cheng, Z. Shen, & Y. Tian, A class of Einstein (α; β)-metrics. preprint, 2010. [8] M. Matsumoto, Foundations of Finsler geometry and Finsler spaces. Japan: Kaiseisha Press, (1986).
[8] M. Matsumoto, The Berwald connection of Finsler with an (α; β)-metric,. Tensor N.S. 50, 1821, (1991).
[9] M. Rafie-Rad, B. Razavi, On Einstein Matsumoto metrics. Elsevier, Nonlinear Analysis: Real World Applications, 13, 882-886, (2012).
[10] M. Rafie-Rad, Time-optimal solutions of parallel navigation and Finsler geodesics. Nonlinear Anal. RWA 11, 38093814, (2010).
[11] B. Rezaei, A. Razavi, & N. Sadeghzadeh, On Einstein (α; β) -metrics. Iranian Journal of Science and Technology. Vol. 31, No. A4, 403-412.
[12] C. Robles, Einstein Metrics of Randers type. Ph.D Thesis, British Columbia. (2003).
[13] Z. Shen, On Projectively related Einstein metrics in Riemann-Finsler geometry. Math. Ann., 625-647, (2001).
[14] Z. Shen, Differential Geometry of Spray and Finsler Spaces. Dordrecht, Kluwer Academic Publishers. (2001).

Keywords
(α, β)-metrics, Riemannian curvature, Ricci curvature, Einstein Finsler space.