Volume 65 | Issue 10 | Year 2019 | Article Id. IJMTT-V65I10P512 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I10P512
Anoutstanding way of findingneighborhood degree sum based topological indices is neighborhood M-polynomial. The bismuth tri-iodide đ”đđŒ3 is a wide band gap layered semiconductor with several optical properties.In this paper, the neighborhood M-polynomial of bismuth tri-iodide chain and sheet are obtained. Some topological indices based on neighbourhood degree sum are recovered from the neighbourhood Mpolynomial. Also, the findings are interpreted graphically.
[1] H. Wiener, âStructural determination of the paraffin boiling pointsâ,J. Am. Chem. Soc., vol. 69, no. 1, pp. 17-20, 1947.
[2] S. M. Hosamani, âComputing Sanskruti index of certain nanostructuresâ, J. Appl. Math. Comput., vol. 54, pp. 425-433, 2017.
[3] M. Ghorbani and M. A. Hosseinzadeh, âThe third version of Zagreb indexâ, Discrete Math. Algorithms Appl., vol. 5, 2013, doi: 10.1142/S1793830913500390.
[4] V. R. Kulli,â Neighborhood Indices of Nanostructuresâ, International Journal of Current Research in Science and Technology, vol. 5, no. 3, pp. 1-14, 2019.
[5] V. R. Kulli, âMultiplicative Neighborhood Indicesâ, Annuls of Pure and Applied Mathematics, vol. 1x, 2019, doi: 10.22457/apam.614v19n2a6.
[6] S. Mondal, N. De and A. Pal, âOn Neighbourhood Zagreb index of product graphsâ, Preprint, arXiv:1805.05273, 2018.
[7] S. Mondal, N. De and A. Pal, âOn some new neighbourhood degree based indicesâ, ActaChemica Iasi, vol. 27, no. 1, pp. 31-46, 2019.
[8] S. Mondal, N. De and A. Pal, âQSPR analysis of some novel neighborhood degree based topological descriptorsâ, Preprint,arXiv: 1906.06660.
[9] I. Gutman, âSome properties of the Wiener polynomialsâ, Graph Theory Notes N.Y., vol. 125, pp. 13-18, 1993.
[10] V. Alamian, A. Bahrami and B. Edalatzadeh, âPI Polynomial of V-Phenylenic nanotubes and nanotoriâ, Int. J. Mole. Sci., vol. 9, no. 3, pp. 229-234, 2008, doi: 10.3390/ijms9030229.
[11] M. R. Farahani, âComputing theta polynomial, and theta index of V-phenylenic planar, nanotubes and nanotorisâ, Int. J. Theoretical Chem., vol. 1, no. 1, pp. 1-9, 2013.
[12] E. Deutsch and S. Klavzar, âM-Polynomial, and degree-based topological indicesâ, Iran. J. Math. Chem., vol. 6, pp. 93-102, 2015.
[13] Y. C. Kwun, M. Munir, W. Nazeer, S. Rafque and S. M. Kang, âM Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotoriâ, Scientific Reports, vol. 7, 2017, doi:10.1038/s41598-017-08309-y.
[14] S. Mondal, N. De, and A. Pal, âThe M-Polynomial of Line graph of Subdivision graphsâ, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat, vol. 68, no. 2, pp. 2104-2116, 2019.
[15] S. Mondal, N. De and A. Pal, âNeighborhood M-polynomial of crystallographic structuresâ, Preprint.
[16] A. Cuna, I. Aguiar, A. Gancharov, M.E.P. Barthaburu, and L. Fornaro, âCorrelation between growth orientation and growth temperature for bismuth triâiodide filmsâ, Cryst. Res. Technol., vol. 39, no. 10, pp. 899-905, 2004.
[17] A. Cuna, A. Noguera, E. Saucedo, and L. Fornaro, âGrowth of bismuth triâiodide platelets by the physical vapor deposition methodâ, Cryst. Res. Technol., vol. 39, no. 10, pp. 912-919, 2004.
[18] K. Watanabe, T. Karasawa, T. Komatsu, and Y. Kaifu, âOptical properties of extrinsic two-dimensional excitons in BiI3 single crystalsâ, J. Phys. Soc. Jpn., vol. 55, pp. 897-907, 1986.
[19] R.W.G. Wyckoff, Crystal Structures, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA; London, UK; Sydney, Australia, 1964.
[20] H. Yorikawa and S. Muramatsu, âTheoretical Study of Crystal and Electronic Structures of BiI3", J. Phys. Condens. Matter, vol. 20, pp. 325â335, 2008.
A.Verma, S.Mondal, N.De, A.Pal, "Topological Properties of Bismuth tri-iodide Using Neighborhood M-Polynomial," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 10, pp. 83-90, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I10P512