Volume 65 | Issue 11 | Year 2019 | Article Id. IJMTT-V65I11P517 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I11P517
Santosh Kumar, Uttam Kumar Sharma, Khursheed Alam, Girraj Kishore, "A new PDE-based time dependent model for image restoration," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 11, pp. 168-173, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I11P517
[1] L. Alvarez, P. L. Lions and J. M. Morel, Image selective smoothing and edgedetection by nonlinear diffusion II∗, SIAM J. Numer. Anal., 29(3), 1992, 845-866.
[2] F. Catte, P. L. Lions, J. M. Morel and T. Coll, Image selective smoothing and edge detection by nonliear diffusion⋆, SIAM J. Numer. Anal., 29, 1992, 182-193.
[3] T. F. Chan, G. H. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20(6), 1999, 1964-1977.
[4] Q. Chang and I-Liang Chern, Acceleration methods for total variation-based image denoising, SIAM J. Sci. Comput., 25(3), 2003, 982-994.
[5] T. F. Chan and C. K. Wong. Total variation blind deconvolution, IEEE Transactions on Image Processing, 7, 1998, 370-375.
[6] S. Kumar, M.K. Ahmad, A time dependent model for image restoration, Journal of Signal and Information Processing, 6, 2015, 28- 38.
[7] L. Lapidus, G. F. Pinder, Numerical solution of partial differential equations inscience and engineering, SIAM Rev., 25(4), 1983, 581-582.
[8] A. Marquina, Inverse scale space methods for blind deconvolution, UCLA CAM Report, 2006, 06-36.
[9] A. Marquina and S. Osher, Explict algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal, SIAM. J. Sci. Comput., 22(2), 2000, 387-405.
[10] A. Marquina, S. Osher. A new time dependent model based on level set motion for nonlinear deblurring and noise removal. In M. Nielsen, P. johansen, O. F. Olsen and J. Weickert, editors, scale-Space Theories in Computer Vision, volume 1682 of lecture notes in Computer Science, Springer Berlin, 1999, 429-434.
[11] P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 1990, 629- 639.
[12] J. G. Rosen, The gradient projection method for nonlinear programming, Part II, nonlinear constraints, J. Soc. Indust. Appl. Math., 9(4), 1961, 514-532.
[13] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm, Phys. D., 60, 1992, 259-268.
[14] L. Rudin, S. Osher, Total variation based image restoration with free local constraints, Proc. IEEE Int. Conf. Imag. Proc., 1994, 31- 35.
[15] G. Strang, Accurate Partial Difference Methods II. Non Linear Problems, Numer. Math., 6, 1964, 37-46.
[16] G. Strang, On the construction and comparison of difference schemes, SIAM J. numer. Anal., 5(3), 1968, 506-517.
[17] A. P. Witkin, Scale-space filtering, Proc. IJCAI, Karlsruhe, 1983, 1019-1021.
[18] J. Weickert. Anisotropic Diffusion in Image Processing. Teubner, Stuttgart, 1998.
[19] M. Welk, D. Theis, T. Brox, J. Weickert, PDE-based deconvolution with forward-backward diffusivities and diffusion tensors. In scale space, LNCS., Springer, Berlin2005, 585-597.
[20] C.R. Vogel and M.E. Oman, Itrative methods for total variation denoising, SIAM j. Sci. Comput., 17, 1996, 227-238.
[21] Y. L. You and M. Kaveh. Anisotropic blind image restoration. In Proc. 1996 IEEE International Conference on Image Processing, volume 2, pages 461-464, Lausanne, Switzerland, Sept. 1996.
[22] L. Rudin, S. Osher, and C. Fu, Total Variation Based Restoration of Noisy, Blurred Images, SINUM, to appear.
[23] E.R. Cole, The Removal of Unknown Imlige Blurs by Homomorphic Filters, Computer Scienc 5 Report UTEC-CSC-74-2029, (1973), University of Utah.
[24] P.-L. Lions, S. Osher, and L.I. Rudin, Denoising and Deblurring Images with Constmined Nonlinear Partial Diflerential Equations, submitted to SINUM.