Volume 65 | Issue 12 | Year 2019 | Article Id. IJMTT-V65I12P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I12P502
SU Xiao-ya, ZHAI Yan-hu, "Stability And Hopf Branch of A FAST TCP/RED Network Congestion Model with Feedback Control," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 12, pp. 10-24, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I12P502
[1] Jacobson, Congestion avoidance and control, ACM Computer Communication Review 18 (1988) 314-329.
[2] S. Floyd, V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM Transations on Networking 1(1993) 397-413.
[3] S. Floyd, A report on recent developments in TCP congestion control, IEEE Communications Magazine 39 (2001) 84-90.
[4] C. V. Hollot, V. Misra, D. Towsley, W. B. Gong, Analysis and design of controller for AQM routers supporting TCP flows, IEEETrans. Automat. Control 47 (2002) 945-959.
[5] H. Y. Yang, Y. P. Tian, Hopf bifurcation in REM algorithm with communication delay, Chaos Solitons Fractals 25 (2005) 1093-1105.
[6] M. liu, A. Marciello, M. di Bernardo, Lj. Trajkovic, Discontinuinity-induced bifurcation in TCP/RED communication algorithms, in Proc. IEEE Int. Sym. Circuits and Systems Kos,Greece, 2006, pp. 2629-2632.
[7] F. Ren, C.Lin, B. Wei, A nonlinear control theoretic analysis to TCP-RED system, Comput. Netw. 49 (2005)580-592.
[8] C. V. Hollot, Y. Chait, Nonlinear stability analysis for a class of TCP/AQM networks, in: proceedings of the 40th IEEE Confer ence on Decision and Control, vols. 1-5, 2001, pp. 2309-2314.
[9] W. Michiels, D. Melchor-Aguillar, S.I. Niculescu, Stability analysis of some classes of TCP/AQM networks, Internet. J. Control 79 (2005) 1134-1144.
[10] Y.G. Zheng, Z.H. Wang, Stability and Hopf bifurcation of a class of TCP/AQM networks, Nonlinear Analysis: Real World Applications 11 (2010) 1552-1559.
[11] Tan L,Zhang W,Yuan C.On parameter tuning for FAST TCP[J].IEEE Communications Letters,2007,11(5):458-460.
[12] Zhan Z Q,Zhu J,Li W.Stability and bifurcation analysis in a FAST TCP model with feedback delay [J].Nonlinear Dynamics,2012,70(1):255-267.
[13] Liu F,Guan Z H,Wang H O.Stability Analysis and control Hopf Bifurcation in a FAST TCP model [C].Proceedings of the 32nd Chinese Control Conference,2013(7):26-28.
[14] Deng L, Wang X, Peng M. Hopf bifurcation analysis for a ratio-dependent predator–prey system with two delays and stage structure for the predator[J]. Applied Mathematics & Computation, 2014, 231(231):214-230.
[15] K. Cooke, Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl. 86 (1982) 592-627.
[16] W. Yong and Z. Yanhui, “Stability and Hopf bifurcation of diff erential equation model of price with time delay,” Highlights of Sciencepaper Online, vol. 4, no. 1, 2011.
[17] D. Tao, X. Liao, T. Huang, Dynamics of a congestion control model in a wireless access network, Nonlinear Analysis: Real World Applications, vol. 14, no .1, pp. 671-683, 2013.
[18] B.D. Hassard, N.D. Kazarinoff, Y.H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
[19] Bi P, Hu Z. Hopf bifurcation and stability for a neural network model with mixed delays[J]. Applied Mathematics & Computation, 2012, 218(12):6748-6761.
[20] Z.-Q. Zhan, J. Zhu, and W. Li, “Stability and bifurcation analysis in a FAST TCP model with feedback delay,” Nonlinear Dynamics, vol. 70, no. 1, pp. 255–267, 2012.