Volume 65 | Issue 12 | Year 2019 | Article Id. IJMTT-V65I12P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I12P503
Ijomah Maxwell Azubuike, Chris-Chinedu, Joy Nonso, "Jackknife And Bootstrap Techniques In The Estimation of regression Parameters," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 12, pp. 25-35, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I12P503
[1] Chernick, M., R., “ Bootstrap Methods, A Guide for Practitioners and Researchers” , 2nd ed., John Wiley & Sons, Inc.,New Jersey, 2008
[2] DiCiccio, T., Tibshirani, R., “Bootstrap Confıdence Intervals and Bootstrap Approximations”, J. Amer. Statist. Assoc., vol 8 pp. 161–169. 1987.
[3] Efron, B. “Bootstrap methods: another look at the Jackknife”, Ann. Stat., vol7, 1–26. Good, P.I. (2006). Resampling methods 3rd Ed., Boston :Birkhauser, 1979.
[4] Efron, B., “The Jackknife, The Bootstrap and Other Resampling Plans”, CBMS-NSF Regional Conference Series in Applied Mathematics Monograph 38, SIAM, Philadelpia., 1982.
[5] Efron B., “More Efficient Bootstrap Computations”, J. Amer. Statist. Assoc., vol. 86, pp. 79–89,1990.
[6] Efron, B.,Tibshirani, R.J., “An Introduction to the Bootstrap”; Chapman & Hall, New York, 1993.
[7] Friedl, H., Stampfer, E., “Jackknife Resampling, Encyclopedia of Environmetrics,” 2, Eds.: A. El- Shaarawi, W. Piegorsch, Wiley: Chichester, pp. 1089-1098, 2002a.
[8] Friedl, H., Stampfer, E. “Resampling Methods, Encyclopedia of Environmetrics”, 3, Eds.: A. El- Shaarawi, W. Piegorsch, Wiley:Chichester, pp. 1768-1770, 2002b.
[9] Fox, J., Applied Regression Analysis, Linear Models and Related Methods; Sage, 1997.
[10] Freedman D. A.“Bootstrapping regression models”, The Annals of Statistics, Vol. 9, p. 1218-1228, 1981.
[11] Good, P.I. “Resampling methods” 3rd Ed., Boston :Birkhauser, 2006.
[12] Hawkins, D. M., and Olive, D. J. “Inconsistency of Resampling Algorithms forHigh Breakdown Regression Estimators and a New Algorithm,” (with discussion),Journal of the American Statistical Association, 97, 136-159, 2002.
[13] Heltshe, J.F., Forrester, N.E., “Statistical Evaluation of the Jackknife Estimate of Diversity when Using Quadrat Samples”, Ecology, vol. 66, pp. 107-111, 1985.
[14] Karlis, D., “An introduction to Bootstrap Methods”, 17th conference of Greek Statistical Society, Greece, 2004.
[15] Lahiri, S.N. “Resampling methods for dependent data”, Springer : New York, 2003.
[16] Leger, C., Politis, D. N., Romano, J.P., “Bootstrap Technology and Applications”, Technometrics, vol. 34, pp. 378-397, 1992.
[17] McCullough B.D., “Estimating forecast intervals when the exogenous variable is stochastic”, Journal of Forecasting, Vol. 15, p. 293-304, 1996.
[18] Miller, R.G., “The jackknife- a review”, Biometrika, vol. 61, pp. 1-15, 1974.
[19] Mong, J. and Wang, X. “Resampling-based estimator in non-linear regression”, Statist. Sinica, 4, 187-98, 1994.
[20] Quennouille MH. “Approximate tests of correlation in time series.” J R Statist Soc B; 11: pp. 68–84, 1949.
[21] Shao, J., “Bootstrap Model Selection”, J. Amer. Statist. Assoc, vol. 91, pp. 655-665, 1996.
[22] Shao, J., Tu, D., “The Jackknife and Bootstrap”; Springer, New York, 1995.
[23] Stine R.A. “Bootstrap prediction intervals for regression”, Journal of The American Statistical Association, Vol. 80, p. 1026 -1031, 1985.
[24] Stine, R., A., “Modern Methods of Data Analysis”; Edit: by John Fox, pp. 325-373, Scotland Sage Pub.,1990.
[25] Tukey, J.W. “Bias and confidence in not quite large samples”, Ann. Math. Stat., 29, 614, 1958.
[26] Wolter, K.M. “Introduction to Variance estimation”, New York: Springer Verlag, 1985.
[27] Wu, C.F.J., “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis”, Annals of Statistics, vol. 14, pp. 1343-1350, 1986.