Volume 65 | Issue 12 | Year 2019 | Article Id. IJMTT-V65I12P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I12P513
Here we study weak convergence of sequence of Pettis integrable multifunctions on 2X.
[1] K.E.Amri, C.Hess, On the Pettis Integrals of Closed Valued Multifunctions, Set-Valued Anal.8 (2000), 329-360.
[2] D. Barcenas, Weak Compactness Criteria for Set Valued Integrals and Radon-Nikodym The- orem for Set Valued Multimeasures, Czech.Math.J.51 (126), (2001), 493-504.
[3] C. Castaing, M.Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin, New-York, 1977.
[4] N.D. Chakraborty, T.Choudhury, Convergence Theorems for Pettis Integrable Functions and Regular Methods of Summability. J. Math. Anal. Appl., 359 (2009), 95-105.
[5] N.D. Chakraborty, T.Choudhury, On Some Properties of Pettis Integrable Multifunction,J. of Convex Analysis, 19(2012),No.3, 671-683.
[6] N.D. Chakraborty, T.Choudhury,Set-Valued Measure and Set Valued Weak Radon-Nikodym Derivative of a Set-Valued Measure,Bull. of The Allahabad Math. Soc., 31( 2016), Part 1, 121-134.
[7] A.Coste, La propriete de Radon-Nikodym en integration multivoque, C.R.Acad. Sc. Paris ser A 280 (1975), 1515-1518.
[8] J.Diestel, J.J.Uhl Jr., Vector Measures, Math. Surveys Monogr. vol. 15, Amer. Math. Soc.
Providence, RI, 1977
[9] N.Dunford, J.T.Schwartz, Linear Operators, Part1: General Theory, Interscience, New York, 1958.
[10] C.Godet-Thobie, Some Results About Multimeasures and their Selectors, Lecture Notes in Mathematics, vol. 794 (1979-80), 112-116.
[11] C.Godet-Thobie, B.Satco, Decomposability and Uniform integrability in Pettis integration, Quaest. Math.29 (2006), 1-20 (on line).
[12] F.Hiai, H.Umegaki, Integrals, Conditional Expectations and Martingales of Multivalued Functions, J. Multivariate Anal.7 (1977), 149-182.
[13] R.C.James, Weakly Compact Sets, Trans. Amer. Mat. Soc. 113 (1964), 129-140.
[14] K.Musial, The Weak Radom-Nikodym Property in Banach Spaces, Studia Math. 64(1979), 151-173.
[15] N.S.Papageorgiou, On the Theory of Banach Space Valued Multifunctions. 2. Set Valued Martingales and Set Valued Measures, J. Multivariate Anal. 17, (1985), 207-227.
[16] N.S.Papageorgiou, Contributions to the Theory of Set Valued Functions and Set Valued Measures, Trans. Amer. Math. Soc. 304(1), (1987), 245-265.
[17] H.Ziat, Convergence Theorems for Pettis Integrable Multifunctions, Bull. Pol. Acad. Sci. Math. 45 (2), (1997), 123-137.
[18] H.Ziat, On a Characterization of Pettis Integrable Multifunctions, Bull. Pol. Acad. Sci. Math. 48, (2000), 227-230.
Tanusree Choudhury, "On Weak Convergence Of Pettis Integrable Multifunctions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 12, pp. 130-137, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I12P513